Evaluating ARIMA-Neural Network Hybrid Model Performance in Forecasting Stationary Timeseries

Article Preview

Abstract:

Demand prediction is one of most sophisticated steps in planning and investments. Although many studies are conducted to find the appropriate forecasting models, dynamic nature of forecasted parameters and their effecting factors are apparent evidences for continuous researches. ARIMA, Artificial Neural Network (ANN), and ARIMA-ANN hybrid model are well-known forecasting models. Many researchers concluded that the Hybrid model is the predominant forecasting model in comparison with ARIMA and ANN individual models. Most of these researches are based on non-stationary or seasonal timeseries, whereas in this article, hybrid models forecast ability by stationary time series is studied. Some following demand time steps from a paint manufacturing company are forecasted by all previously mentioned models and ARIMA-ANN hybrid model fails to present the best forecasts.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

510-515

Citation:

Online since:

December 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Z.L. Sun, T.M. Choi, K.F. Au, Y. Yu, Sales forecasting using extreme learning machine with applications in fashion retailing, Decision Support Systems. 46 (2008) 411-419.

DOI: 10.1016/j.dss.2008.07.009

Google Scholar

[2] B. L. Bowerman, R. T. O'Connell, Time series forecasting. Duxbury, Boston. (1987).

Google Scholar

[3] S. Chopra, P. Meindl, SUPPLY CHAIN MANAGEMENT, PEARSON. (2010) 198-226.

Google Scholar

[4] G. P. Zhang, Time series forecasting using a hybrid ARIMA and neural network model, Neurocomputing. 50 (2003) 159-175.

DOI: 10.1016/s0925-2312(01)00702-0

Google Scholar

[5] V.S. Ediger, S. Akar, ARIMA forecasting of primary energy demand by fuel in Turkey, Energy Policy. 35 (2007) 1701-1708.

DOI: 10.1016/j.enpol.2006.05.009

Google Scholar

[6] M. Z. Babai, M. M. Ali, J. E. Boylan, A. A. Syntetos, Forecasting and inventory performance in a two-stage supply chain with ARIMA (0, 1, 1) demand: Theory and empirical analysis, International Journal of Production Economics (2011).

DOI: 10.1016/j.ijpe.2011.09.004

Google Scholar

[7] B. F. Francesco Virili, Nonstationarity and Data Preprocessing for Neural Network Predictions of an Economic Time Series, In Proceedings ofIEEE-INNS-ENNS International Joint Conference on Neural Networks (IJCNN'00). 5 (2000) 5129-5136.

DOI: 10.1109/ijcnn.2000.861446

Google Scholar

[8] M. Khashei, M. Bijari, A novel hybridization of artificial neural networks and ARIMA models for time series forecasting, Applied Soft Computing. 11 (2011) 2664-2675.

DOI: 10.1016/j.asoc.2010.10.015

Google Scholar

[9] L. A. Diaz-Robles, J. C. Ortega, J. S. Fu, G. D. Reed, J. C. Chow, A hybrid ARIMA and artificial neural networks model to forecast particulate matter in urban areas: The case of Temuco, Chile. Atmospheric Environment. 42 (2008) 8331-8340.

DOI: 10.1016/j.atmosenv.2008.07.020

Google Scholar

[10] A.P. Ansuj, M.E. Camargo, R. Radharamanan, D.G. Petry, Sales forecasting using time series and neural networks, Computers and Industrial Engineering. 31 (1996) 421–424.

DOI: 10.1016/0360-8352(96)00166-0

Google Scholar

[11] F. C Palm, A. Zellner, To combine or not to combine? Issues of combining forecasts, Journal of Forecasting. 11 (1992) 687-701.

DOI: 10.1002/for.3980110806

Google Scholar

[12] J. M. Bates, C. W. J. Granger, The combination of forecasts. (1969) 451-468.

Google Scholar

[13] S. Hashem, Optimal linear combinations of neural networks, Purdue University. Ph.D. (1993).

Google Scholar

[14] S. Hashem, B. Schmeiser, Improving model accuracy using optimal linear combinations of trained neural networks. Neural Networks, IEEE Transactions. 6 (1995) 792-794.

DOI: 10.1109/72.377990

Google Scholar

[15] R. R. Andrawis, A. F. Atiya, H. El-Shishini, Forecast combinations of computational intelligence and linear models for the NN5 time series forecasting competition. International Journal of Forecasting. 27 (2011) 672-688.

DOI: 10.1016/j.ijforecast.2010.09.005

Google Scholar

[16] J. S. Armstrong. Principles of forecasting: a handbook for researchers and practitioners, Springer. (2001).

Google Scholar

[17] J. C. Gutiérrez-Estrada, C. Silva, E. Yáñez, N. Rodríguez, I. Pulido-Calvo, Monthly catch forecasting of anchovy Engraulis ringens in the north area of Chile: Non-linear univariate approach, Fisheries Research. 86. 2 (2007) 188-200.

DOI: 10.1016/j.fishres.2007.06.004

Google Scholar

[18] H. Liu, H. Q. Tian, Y. F. Li, Comparison of two new ARIMA-ANN and ARIMA-Kalman hybrid methods for wind speed prediction, Applied Energy. (2012).

DOI: 10.1016/j.apenergy.2012.04.001

Google Scholar

[19] S. De Leeuw, K. V. Donselaar, T. D. Kok, Forecasting techniques in logistics, Advances in distribution logistics, Springer Berlin Heidelberg. (1998) 481-499.

DOI: 10.1007/978-3-642-46865-0_20

Google Scholar

[20] S. Makridakis, M. Hibon, The M3-Competition: results, conclusions and implications, International journal of forecasting. 16 (2000) 451-476.

DOI: 10.1016/s0169-2070(00)00057-1

Google Scholar

[21] J. Shi, J. Guo, S. Zheng, Evaluation of hybrid forecasting approaches for wind speed and power generation time series, Renewable and Sustainable Energy Reviews. 16 (2012) 3471-3480.

DOI: 10.1016/j.rser.2012.02.044

Google Scholar

[22] T. Taskaya-Temizel, M. C. Casey, A comparative study of autoregressive neural network hybrids, Neural Networks. 18 (2005) 781-789.

DOI: 10.1016/j.neunet.2005.06.003

Google Scholar

[23] T. Taskaya-Temizel, K. Ahmad. Are ARIMA neural network hybrids better than single models?, Neural Networks. (2005).

DOI: 10.1109/ijcnn.2005.1556438

Google Scholar

[24] G. Box, G. Jenkins, Time series analysis; forecasting and control. Holden-Day, San Francisco(CA). (1970).

Google Scholar

[25] G. P. Zhang, M. Qi, Neural network forecasting for seasonal and trend time series, European journal of operational research. 160 (2005) 501-514.

DOI: 10.1016/j.ejor.2003.08.037

Google Scholar

[26] W. C. Hong, Y. Dong, L. Y. Chen, S. Y. Wei, SVR with hybrid chaotic genetic algorithms for tourism demand forecasting, Applied Soft Computing. 11 (2011) 1881-1890.

DOI: 10.1016/j.asoc.2010.06.003

Google Scholar

[27] P. J. Werbos, Generalization of backpropagation with application to a recurrent gas market model. Neural networks. 1 (1988) 339-356.

DOI: 10.1016/0893-6080(88)90007-x

Google Scholar