[1]
Z.L. Sun, T.M. Choi, K.F. Au, Y. Yu, Sales forecasting using extreme learning machine with applications in fashion retailing, Decision Support Systems. 46 (2008) 411-419.
DOI: 10.1016/j.dss.2008.07.009
Google Scholar
[2]
B. L. Bowerman, R. T. O'Connell, Time series forecasting. Duxbury, Boston. (1987).
Google Scholar
[3]
S. Chopra, P. Meindl, SUPPLY CHAIN MANAGEMENT, PEARSON. (2010) 198-226.
Google Scholar
[4]
G. P. Zhang, Time series forecasting using a hybrid ARIMA and neural network model, Neurocomputing. 50 (2003) 159-175.
DOI: 10.1016/s0925-2312(01)00702-0
Google Scholar
[5]
V.S. Ediger, S. Akar, ARIMA forecasting of primary energy demand by fuel in Turkey, Energy Policy. 35 (2007) 1701-1708.
DOI: 10.1016/j.enpol.2006.05.009
Google Scholar
[6]
M. Z. Babai, M. M. Ali, J. E. Boylan, A. A. Syntetos, Forecasting and inventory performance in a two-stage supply chain with ARIMA (0, 1, 1) demand: Theory and empirical analysis, International Journal of Production Economics (2011).
DOI: 10.1016/j.ijpe.2011.09.004
Google Scholar
[7]
B. F. Francesco Virili, Nonstationarity and Data Preprocessing for Neural Network Predictions of an Economic Time Series, In Proceedings ofIEEE-INNS-ENNS International Joint Conference on Neural Networks (IJCNN'00). 5 (2000) 5129-5136.
DOI: 10.1109/ijcnn.2000.861446
Google Scholar
[8]
M. Khashei, M. Bijari, A novel hybridization of artificial neural networks and ARIMA models for time series forecasting, Applied Soft Computing. 11 (2011) 2664-2675.
DOI: 10.1016/j.asoc.2010.10.015
Google Scholar
[9]
L. A. Diaz-Robles, J. C. Ortega, J. S. Fu, G. D. Reed, J. C. Chow, A hybrid ARIMA and artificial neural networks model to forecast particulate matter in urban areas: The case of Temuco, Chile. Atmospheric Environment. 42 (2008) 8331-8340.
DOI: 10.1016/j.atmosenv.2008.07.020
Google Scholar
[10]
A.P. Ansuj, M.E. Camargo, R. Radharamanan, D.G. Petry, Sales forecasting using time series and neural networks, Computers and Industrial Engineering. 31 (1996) 421–424.
DOI: 10.1016/0360-8352(96)00166-0
Google Scholar
[11]
F. C Palm, A. Zellner, To combine or not to combine? Issues of combining forecasts, Journal of Forecasting. 11 (1992) 687-701.
DOI: 10.1002/for.3980110806
Google Scholar
[12]
J. M. Bates, C. W. J. Granger, The combination of forecasts. (1969) 451-468.
Google Scholar
[13]
S. Hashem, Optimal linear combinations of neural networks, Purdue University. Ph.D. (1993).
Google Scholar
[14]
S. Hashem, B. Schmeiser, Improving model accuracy using optimal linear combinations of trained neural networks. Neural Networks, IEEE Transactions. 6 (1995) 792-794.
DOI: 10.1109/72.377990
Google Scholar
[15]
R. R. Andrawis, A. F. Atiya, H. El-Shishini, Forecast combinations of computational intelligence and linear models for the NN5 time series forecasting competition. International Journal of Forecasting. 27 (2011) 672-688.
DOI: 10.1016/j.ijforecast.2010.09.005
Google Scholar
[16]
J. S. Armstrong. Principles of forecasting: a handbook for researchers and practitioners, Springer. (2001).
Google Scholar
[17]
J. C. Gutiérrez-Estrada, C. Silva, E. Yáñez, N. Rodríguez, I. Pulido-Calvo, Monthly catch forecasting of anchovy Engraulis ringens in the north area of Chile: Non-linear univariate approach, Fisheries Research. 86. 2 (2007) 188-200.
DOI: 10.1016/j.fishres.2007.06.004
Google Scholar
[18]
H. Liu, H. Q. Tian, Y. F. Li, Comparison of two new ARIMA-ANN and ARIMA-Kalman hybrid methods for wind speed prediction, Applied Energy. (2012).
DOI: 10.1016/j.apenergy.2012.04.001
Google Scholar
[19]
S. De Leeuw, K. V. Donselaar, T. D. Kok, Forecasting techniques in logistics, Advances in distribution logistics, Springer Berlin Heidelberg. (1998) 481-499.
DOI: 10.1007/978-3-642-46865-0_20
Google Scholar
[20]
S. Makridakis, M. Hibon, The M3-Competition: results, conclusions and implications, International journal of forecasting. 16 (2000) 451-476.
DOI: 10.1016/s0169-2070(00)00057-1
Google Scholar
[21]
J. Shi, J. Guo, S. Zheng, Evaluation of hybrid forecasting approaches for wind speed and power generation time series, Renewable and Sustainable Energy Reviews. 16 (2012) 3471-3480.
DOI: 10.1016/j.rser.2012.02.044
Google Scholar
[22]
T. Taskaya-Temizel, M. C. Casey, A comparative study of autoregressive neural network hybrids, Neural Networks. 18 (2005) 781-789.
DOI: 10.1016/j.neunet.2005.06.003
Google Scholar
[23]
T. Taskaya-Temizel, K. Ahmad. Are ARIMA neural network hybrids better than single models?, Neural Networks. (2005).
DOI: 10.1109/ijcnn.2005.1556438
Google Scholar
[24]
G. Box, G. Jenkins, Time series analysis; forecasting and control. Holden-Day, San Francisco(CA). (1970).
Google Scholar
[25]
G. P. Zhang, M. Qi, Neural network forecasting for seasonal and trend time series, European journal of operational research. 160 (2005) 501-514.
DOI: 10.1016/j.ejor.2003.08.037
Google Scholar
[26]
W. C. Hong, Y. Dong, L. Y. Chen, S. Y. Wei, SVR with hybrid chaotic genetic algorithms for tourism demand forecasting, Applied Soft Computing. 11 (2011) 1881-1890.
DOI: 10.1016/j.asoc.2010.06.003
Google Scholar
[27]
P. J. Werbos, Generalization of backpropagation with application to a recurrent gas market model. Neural networks. 1 (1988) 339-356.
DOI: 10.1016/0893-6080(88)90007-x
Google Scholar