Robust Admissibility Analysis of Switched Singular Systems with Linear Fractional Uncertainties

Article Preview

Abstract:

This paper considers the problem of robust admissibility analysis of uncertain discrete-time switched linear singular systems for arbitrary switching laws. The parameter uncertainties are assumed to be of linear fractional form. By using the switched Lyapunov function approach, some new sufficient conditions ensuring such systems to be admissible for arbitrary switching laws are presented in terms of linear matrix inequalities (LMIs). Example is provided to demonstrate the effectiveness of the obtained results

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 846-847)

Pages:

233-237

Citation:

Online since:

November 2013

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A S. Morse. Control Using Logic-based Switching (Springer-Verlag, London, U.K. 1997).

Google Scholar

[2] D. Liberzon and A S. Morse. Basic problems in stability and design of switched system. IEEE Control Systems Magazine Vol. 19, No. 5(1999), p.59–70.

Google Scholar

[3] M S. Branicky. Multiple Lyapunov functions and other analysis tools for switched and hybrid systems. IEEE Transactions on Automatic Control Vol. 43, No. 4 (1998). p.475–782.

DOI: 10.1109/9.664150

Google Scholar

[4] R. A. Decarlo, M. S. Branicky, S. Pettersson and B. Lennartson. Perspectives and results on the stability and stabilizability of hybrid systems. Proceedings of the IEEE, Vol. 88, No. 7 (2000), p.1069–1082.

DOI: 10.1109/5.871309

Google Scholar

[5] J. Daafouz, P. Riedinger and C. Iung. Stability analysis and control synthesis for switched systems: a switched lyapunov function approach. IEEE Transactions on Automatic Control Vol. 47, No. 11 (2002). p.1883–1887.

DOI: 10.1109/tac.2002.804474

Google Scholar

[6] L. Dai. Singular Control Systems (Springer-Verlag, Berlin, Germany 1989).

Google Scholar

[7] S. Xu and C. Yang. Stabilization of discrete-time singular systems: a matrix inequalities approach. Automatica Vol. 35, No. 9 (1999). p.1613–1617.

DOI: 10.1016/s0005-1098(99)00061-8

Google Scholar

[8] S. Xu and J. Lam. Robust stability and stabilization of discrete singular systems: an equivalent characterization. IEEE Transactions on Automatic Control Vol. 49, No. 4 (2004). p.568–574.

DOI: 10.1109/tac.2003.822854

Google Scholar

[9] M. Chadli and M. Darouach. Novel bounded real lemma for discrete-time descriptor systems: Application to H∞ control design. Automatica Vol. 48 (2012). p.449–453.

DOI: 10.1016/j.automatica.2011.10.003

Google Scholar

[10] B. Cantó, C. Coll and E. Sánchez. Positive N-periodic descriptor control systems. System & Control Letters Vol. 53, No. 5 (2004). p.407–414.

DOI: 10.1016/j.sysconle.2004.05.017

Google Scholar

[11] D. Bedrosian and J. Vlach. Time-domain analysis of networks with internally controlled switches. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications Vol. 39, No. 3 (1992). p.199–212.

DOI: 10.1109/81.128014

Google Scholar

[12] Y. Yin, Y, Liu and J. Zhao. Stability of a class of switched linear singular systems. Control and Decision Vol. 21, No. 1 (2006). p.24–27.

Google Scholar

[13] G. Xie and L. Wang. Stability and stabilization of switched descriptor systems under arbitrary switching. in: Proceedings of the 2004 IEEE international Conference on Systems, Man and Cybernetics, 2004, p.779–783.

DOI: 10.1109/icsmc.2004.1398397

Google Scholar

[14] G. Zhai, R. Kou, J. Imae and T. Kobayashi. Stability analysis and design for switched descriptor systems. in: Proceedings of the 2006 IEEE International Symposium on Intelligent Control, Munich, Germany, 2006, p.482–487.

DOI: 10.1109/isic.2006.285599

Google Scholar

[15] G. Zhai, X. Xu, J. Imae and T. Kobayashi. Qualitative analysis of switched discrete-time descriptor systems. in: Proceedings of the 22nd IEEE International Symposium on Intelligent Control Part of IEEE Multi-conference on Systems and Control, Singapore, 2007, p.196.

DOI: 10.1109/isic.2007.4450884

Google Scholar

[16] B. Meng and J. Zhang. Output feedback based admissible control of switched linear singular systems. Acta Automatica Sinica Vol. 32, No. 2 (2006). p.181–185.

Google Scholar

[17] L. Xie. Output feedback H∞ control of systems with parameter uncertainty. International Journal of Control Vol. 63, No. 4 (1996). p.741–750.

DOI: 10.1080/00207179608921866

Google Scholar