Blind Images Separation Based on Sparse Independent Component Analysis

Article Preview

Abstract:

In this paper, a novel sparse component multi-resolution independent component analysis is presented. This method separates mixed images based on quadratic function of sparse component coefficient. The quadratic function can be interpreted as the time-frequency function or time-scale function. The performance of the algorithm is evaluated by using noisy mixed images data. Experimental results show that the method is feasible.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 846-847)

Pages:

929-933

Citation:

Online since:

November 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Hyvärinen, A; Oja, E (2000). Independent Component Analysis: Algorithms and Applications. Neural Networks, 13(4-5), 411-430.

DOI: 10.1016/s0893-6080(00)00026-5

Google Scholar

[2] Hyvärinen, A (1999). Fast and Robust Fixed-Point Algorithms for Independent Component Analysis. IEEE Transactions on Neural Networks, 10(3), 626-634.

DOI: 10.1109/72.761722

Google Scholar

[3] Linh-Trung Nguyen, Adel Belouchrani, Karim Abed-Meraim, Baualem Boashash Separating More Sources then Sensors Using Time-Frequency Distributions Signal Processing and its Applications, Sixth International, 583-686 vol. 2 . (2001).

DOI: 10.1109/isspa.2001.950212

Google Scholar

[4] A. Belouchrani and M.G. Amin, Blind source separation based on time-frequency signal representations, IEEE Trans. Spch. Aud. Proc. vol. 46, pp.2888-2897, Nov. (1998).

DOI: 10.1109/78.726803

Google Scholar

[5] M. Elad and A.M. Bruckstein, A generalized uncertainty principle and sparse representation in pairs of bases, IEEE Trans. On Information Theory, 48: 2558–2567, (2002).

DOI: 10.1109/tit.2002.801410

Google Scholar

[6] R. Gribonval and M. Nielsen, Sparse decompositions in unions of bases, IEEE Trans. on Information Theory, 49(12): 3320–3325, (2003).

DOI: 10.1109/tit.2003.820031

Google Scholar

[7] M. Aharon,M. Elad, and A.M. Bruckstein, K-SVD and its non-negative variant for dictionary design, Proceeding of the SPIE conference wavelets, VOl. 5914, July (2005).

DOI: 10.1117/12.613878

Google Scholar

[8] M. Aharon,M. Elad, and A.M. Bruckstein, On the uniqueness of overcomplete dictionaries and a practical way to retrieve them, Journal of Linear Algerbra and Applications, 416(1): 48, July (2006).

DOI: 10.1016/j.laa.2005.06.035

Google Scholar

[9] Wang, Jing Hui; Zhao, Yuan Chao, Blind source separation based on wavelet and cross-wavelet, Advanced Materials Research, Guangzhou, China, 2011, 2064-(2068).

DOI: 10.4028/www.scientific.net/amr.328-330.2064

Google Scholar

[10] Wang, JingHui; Zhao, YuanChao, Blind source separation based on power spectral density Lecture Notes in Computer Science Volume: 7003 LNAI PART 2, 2011, 602-609.

DOI: 10.1007/978-3-642-23887-1_77

Google Scholar

[11] A. Holobar, C. Févotte, C. Doncarli, and D. Zazula, Single autoterms selection for blind source separation in time–frequency plane, in Proc. EUSIPCO, vol. 1, 2002, p.565–568.

Google Scholar

[12] C. Févotte, R. Gribonval , E. Vncent, BSS_EVAL toolbox user guide revision 2. 0, April. (2005).

Google Scholar