Preparation and Characterization of PLA-PEO Bicomponent Fibers with Porous-Smooth Surface by Co-Electrospinning

Article Preview

Abstract:

Poly (lactic acid) (PLA)/polyethylene oxide (PEO) bicomponent fibers with porous and smooth surface on different side of the same fibers were fabricated by co-electrospinning technique. Specific solvent systems were used deliberately to induce pore formation on PLA phase. The results showed that the porous-smooth surface fibers were obtained using PLA-PEO flow rate ratio of 0.75:0.25 to 0.25:0.75 ml/hr. While, Fiber size decreased with decrease in PEO concentration and PEO flow rate ratio, the applied voltage had small effect on fiber size change. After PEO phase removal via selective dissolution with water, the C-shape PLA fibers with porous surface was generated.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

115-120

Citation:

Online since:

November 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. Gupta and G.L. Wilkes: Polymer Vol. 44 (2003), pp.6353-6359.

Google Scholar

[2] A.V. Bazilevsky, A.L. Yarin and C.M. Megaridis: Langmuir Vol. 23 (2007), pp.2311-2314.

Google Scholar

[3] J. T. Mccann, D. Li and Y. Xia: Journal of Materials Chemistry Vol. 15 (2005), pp.735-738.

Google Scholar

[4] B. Ding, M. Wang, X. Wang, J. Yu and G. Sun: Electrospun nanomaterials for ultrasensitive sensors Vol. 13 (2010), pp.16-26.

Google Scholar

[5] S. Pavasupree, K. Srikulkit and R. Rangkupan: Advanced Materials Research Vol. 701 (2013), pp.254-258.

DOI: 10.4028/www.scientific.net/amr.701.254

Google Scholar

[6] T. Lin, H. Wang and X. Wang: Advance Materials Vol. 17 (2005), pp.2699-2703.

Google Scholar

[7] Z. Liu, D. D. Sun, P. Guo and J. O. Leckie: Nano Letters Vol. 7 (2007), pp.1081-1085.

Google Scholar

[8] D. Li, A. Bable, S. A. Jenekhe and Y. Xia: Adv. Mater Vol. 16 (2004), p.2062-(2066).

Google Scholar

[9] Y. Srivastava, M. Marquez and T. Thorsen: Biomicrofluidics Vol. 3 (2009), pp.1-6.

Google Scholar

[10] S. Chen, H. Hou, P. Hu, J. H. Wendorff, A. Greiner and S. Agarwal: Macromolecular Materials and Engineering Vol. 294 (2009), pp.781-786.

Google Scholar

[11] A. Saraf, G. Lozier, A. Haesslein, F. K. Kasper, R. M. Raphael, L. S. Baggett and A. G. Mikos: Tissue Engineering Part C Vol. 15 (2009), pp.333-344.

DOI: 10.1089/ten.tec.2008.0422

Google Scholar

[12] Y. Lu, H. Jiang, K. Tu and L. Wang: Acta Biomateriala Vol. 5 (2009), pp.1562-1574.

Google Scholar

[13] L. Zhang and Y. L. Hsieh: Carbohydrate Polymers Vol. 71 (2008), pp.196-207.

Google Scholar

[14] Y. F. Qian, Y. Su, X. Q. Li, H. S. Wang and C. L. He: Iranian Polymer Journal Vol. 19 (2010), pp.123-129.

Google Scholar

[15] S. Megelski, J. S. Stephens, D. B. Chase and J. F. Rabolt: Macromolecules Vol. 35 (2002), pp.8456-8466.

DOI: 10.1021/ma020444a

Google Scholar

[16] K. H. K. Chan and M. Kotaki: Journal of applied Polymer Science. Vol. 111 (2009), pp.408-416.

Google Scholar

[17] Y. Srivastava, M. Marquez and T. Thorsen: J Appl Polym Sci. Vol. 106 (2007), pp.3171-3178.

Google Scholar