Free Vibrations Analysis of Carbon Nanotubes

Article Preview

Abstract:

In the case of possible using carbon nanotubes in nanoelectronics and nanodevices the dynamic behavior is the key property. Various methods used in the derivation of eigenfrequencies of carbon nanotubes are presented and discussed herein. In particular, the atomistic, continuum mechanics and the numerical modeling are described. The most important factors that characterize the values of the free vibration of carbon nanotubes are summarized. It is worth to mention that the eigenfrequencies for carbon nanotubes lie in the range from GHz to even THz.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

94-99

Citation:

Online since:

November 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Poot and H.S.J. van der Zant: Phys. Reports Vol. 511(2012), p.273.

Google Scholar

[2] R.F. Gibson, E.O. Ayorinde and Y.F. Wen: Compos. Sci. Technol. Vol. 67 (2007), p.1.

Google Scholar

[3] Y. G Hu., K.M. Liew and Q. Wang: Procedia Eng. Vol. 31 (2012), p.343.

Google Scholar

[4] Ch. Li and T.W. Chou: Appl. Phys. Lett. Vol. 84 (2004), p.121.

Google Scholar

[5] A. Muc, M. Chwał and A. Banaś: Biuletyn WAT Vol. 61 (2012), p.135.

Google Scholar

[6] R. Ansari, S. Ajori and B. Arash: Current Appl. Phys. Vol. 12 (2012), p.707.

Google Scholar

[7] D. Ambrosini and F. Borbon: Comput. Mater. Sci. Vol. 53 (2012), p.214.

Google Scholar

[8] E.W. Wong, P.E. Sheehan and C.M. Lieber: Sci. Vol. 277 (1997), p. (1971).

Google Scholar

[9] C.Q. Ru: Phys. Rev. B Vol. 62 (2000), 16962–16967 (2000).

Google Scholar

[10] J. Yoon, C.Q. Ru and A. Mioduchowski: Phys. Rev. B Vol. 66 (2002), p.233402.

Google Scholar

[11] T. Natsuki, Q.Q. Ni and M. Endo: Carbon Vol. 46 (2008), p.1570.

Google Scholar

[12] Y. Zhang, G. Liu and X. Han: Phys. Lett. A Vol. 340 (2005), p.258.

Google Scholar

[13] J. Yoon, C.Q. Ru and A. Mioduchowski: Compos. B Vol. 35 (2004), p.87.

Google Scholar

[14] J. Yoon, C.Q. Ru and A. Mioduchowski: Compos. Sci. Technol. Vol. 63 (2003), p.1533.

Google Scholar

[15] C.Y. Wang, C.Q. Ru and A. Mioduchowski: J. Appl. Phys. Vol. 97 (2005), p.114323.

Google Scholar

[16] X.Y. Wang and X. Wang: Compos. B Vol. 35 (2004), p.79.

Google Scholar

[17] M. Mitra and S. Gopalakrishnan: J. Appl. Phys. Vol. 101 (2007), p.114320.

Google Scholar

[18] M. Mitra and S. Gopalakrishnan: Comput. Mater. Scie. Vol. 45 (2009), p.411.

Google Scholar

[19] A. Muc and M. Chwał, in: Symposium on Dynamics Modeling and Interaction Control in Virtual and Real Environments, edited by G. Stepan, L. Kovacs and A. Toth, IUTAM Bookseries Vol. 30 (2011), p.239.

DOI: 10.1007/978-94-007-1643-8_27

Google Scholar

[20] S.K. Georgantzinos and N.K. Anifantis: Comput. Mater. Sci. Vol. 47 (2009), p.168.

Google Scholar

[21] A.Y. Joshi, S.P. Harsha and S.C. Sharma: Phys. E Vol. 42 (2010), p.2115.

Google Scholar

[22] H.C. Cheng, Y.L. Liu, Y.C. Hsu and W.H. Chen: Int. J. Solid. Struct. Vol. 46 (2009), p.1695.

Google Scholar

[23] S.A. Fazelzadeh and E. Ghavanloo: Compos. Struct. Vol. 94 (2012), p.1016.

Google Scholar

[24] A. Muc: Mater. Design Vol. 31 (2010), p.1671.

Google Scholar