First-Principles Study of the Mechanical Properties of ScAl Microalloyed by 4d-Transition Metals

Article Preview

Abstract:

The structural and elastic properties of B2 ScAl doped with Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag and Cd elements are studied by using first-principles calculations. The calculated elastic coefficients of pure ScAl are consistent with other theoretical results. The results of elastic constants indicate that all the ScAl-based alloys discussed are mechanically stable. The bulk modulus B, shear modulus G, Youngs modulus Y, Pugh ratio B/G and Cauchy pressure (C12-C44) are investigated. It is found that the addition of Ru that prefers Al site in ScAl can increase the stiffness of ScAl and improve its ductility.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

198-202

Citation:

Online since:

January 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] I. Baker: Mater. Sci. Eng. A Vol. 192–193, Part 1 (1995), p.1.

Google Scholar

[2] R. Wang, S. Wang, X. Wu and T. Song: Int. J. Thermophys. Vol. 33 (2012), p.300.

Google Scholar

[3] S. Li, S. Wang and R. Wang: Physica. B Vol. 406 (2011), p.4529.

Google Scholar

[4] Ş. Ugˇur, N. Arıkan, F. Soyalp and G. Ugˇur: Comput. Mater. Sci. Vol. 48 (2010), p.866.

DOI: 10.1016/j.commatsci.2010.04.009

Google Scholar

[5] V. Srivastava, S.P. Sanyal and M. Rajagopalan: Physica. B Vol. 403 (2008), p.3615.

Google Scholar

[6] Y. Ouyang, J. Wang, Y. Hou, X. Zhong, Y. Du and Y. Feng: J. Chem. Phys. Vol. 128 (2008), p.074305.

Google Scholar

[7] X. Tao, Y. Ouyang, H. Liu, F. Zeng, Y. Feng and Z. Jin: Physica. B Vol. 399 (2007), p.27.

Google Scholar

[8] X. Tao, Y. Ouyang, H. Liu, F. Zeng, Y. Feng and Z. Jin: Comput. Mater. Sci. Vol. 40 (2007), p.226.

Google Scholar

[9] E. Clouet and A. Barbu: Acta Mater. Vol. 55 (2007), p.391.

Google Scholar

[10] J. Røyset and N. Ryum: Int. Mater. Rev. Vol. 50 (2005), p.19.

Google Scholar

[11] M. Asta and V. Ozoliņš: Phys. Rev. B Vol. 64 (2001), p.094104.

Google Scholar

[12] D. Nguyen-Manh and D.G. Pettifor: Intermetallics Vol. 7 (1999), p.1095.

Google Scholar

[13] G. Cacciamani, P. Riani, G. Borzone, N. Parodi, A. Saccone, R. Ferro, A. Pisch and R. Schmid-Fetzer: Intermetallics Vol. 7 (1999), p.101.

DOI: 10.1016/s0966-9795(98)00022-3

Google Scholar

[14] S.J. Clark, M.D. Segall, C.J. Pickard, P.J. Hasnip, M.I.J. Probert, K. Refson and M.C. Payne: Z. Kristallogr. Vol. 220 (2005), p.567.

DOI: 10.1524/zkri.220.5.567.65075

Google Scholar

[15] J.P. Perdew and Y. Wang: Phys. Rev. B Vol. 45 (1992), p.13244.

Google Scholar

[16] J.P. Perdew, K. Burke and M. Ernzerhof: Phys. Rev. Lett. Vol. 77 (1996), p.3865.

Google Scholar

[17] H.J. Monkhorst and J.D. Pack: Phys. Rev. B Vol. 13 (1976), p.5188.

Google Scholar

[18] P. Hohenberg and W. Kohn: Phys. Rev. Vol. 136 (1964), p. B864.

Google Scholar

[19] W. Wolf, R. Podloucky, P. Rogl and H. Erschbaumer: Intermetallics Vol. 4 (1996), p.201.

Google Scholar

[20] D.C. Wallace: Thermodynamics of Crystals (Wiley, New York 1972).

Google Scholar

[21] E. Schreiber, O.L. Anderson and N. Soga: Elastic Constants and their Measurements (McGraw-Hill, New York 1973).

Google Scholar

[22] J. Haines, J.M. Léger and G. Bocquillon: Ann. Rev. Mater. Res. Vol. 31 (2001), p.1.

Google Scholar

[23] J.F. Nye: Physical Properties of Crystals: Their Representation by Tensors and Matrices (Oxford University Press, New York 1985).

Google Scholar

[24] S.F. Pugh: Philos. Mag. Vol. 45 (1954), p.823.

Google Scholar

[25] D.G. Pettifor: Mater. Sci. Technol. Vol. 8 (1992), p.345.

Google Scholar

[26] K. Chen, L.R. Zhao, R. John and S.T. John: J. Phys. D: Appl. Phys. Vol. 36 (2003), p.2725.

Google Scholar