A Numerical Study on Hollow Droplets Impact onto a Solid Substrate

Article Preview

Abstract:

A numerical model using VOF method is developed to describe the phenomenon of a hollow droplet impact on a flat surface including spreading, retardation, recoil and first and secondary break up. The proposed model is verified by literature experiments. Some new hydrodynamic characteristics have been found. The mechanism of central counter jet is explored according to pressure distribution and velocity vectors inside droplet. The relationship between impact features of droplet and deposition parameters is highlighted. In order to investigate the heat transfer rate at the gas-liquid interface, air entrapment and gas cavity are discussed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

501-505

Citation:

Online since:

January 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Yin F L, Zhu S, Liu J, et al. Numerical Simulation of Molten Metal Droplet Impinging in Uniform Droplet Spray Rapid Prototyping[C]/Materials Science Forum. 2012, 704: 680-684.

DOI: 10.4028/www.scientific.net/msf.704-705.680

Google Scholar

[2] Rahimi S, Weihs D. Gelled fuel simulant droplet impact onto a solid surface[J]. Propellants, Explosives, Pyrotechnics, 2011, 36(3): 273-281.

DOI: 10.1002/prep.201000023

Google Scholar

[3] Shinoda K, Murakami H. Splat morphology of yttria-stabilized zirconia droplet deposited via hybrid plasma spraying[J]. Journal of thermal spray technology, 2010, 19(3): 602-610.

DOI: 10.1007/s11666-009-9460-9

Google Scholar

[4] Chien K, Golozar M, Coyle T W. Effect of Solution Chemistry on Coating Microstructure by Solution Precursor Plasma Spraying[C]/Proceedings of the 20th International Symposium on Plasma Chemistry. 2011: 24-29.

Google Scholar

[5] Escure C, Vardelle M, Fauchals P. Experimental and theoretical study of the impact of alumina drops on cold and hot substrates[J]. Plasma Chemistry and Plasma Processing, 2003, 23(2): 185-221.

DOI: 10.1023/a:1022976914185

Google Scholar

[6] Shinoda K., Murakami H. Splat morphology of yttria-stabilized zirconia droplet deposited via hybrid plasma spraying[J]. Journal Thermal Spray Technology, 2010, 19(3), 602–610.

DOI: 10.1007/s11666-009-9460-9

Google Scholar

[7] Solonenko, O.P., Gulyaev, I.P., Smirnov, A.V. Plasma processing and deposition of powdered metal oxides consisting of hollow spherical particles[J]. Techical Physics Letters, 2008, 34(12), 1050–1052.

DOI: 10.1134/s1063785008120183

Google Scholar

[8] Solonenko O P, Gulyaev I P, Smirnov A V. Thermal plasma processes for production of hollow spherical powders: theory and Experiment[J]. Journal of Thermal Science and Technology, 2011, 6(2): 219-234.

DOI: 10.1299/jtst.6.219

Google Scholar

[9] I. P. Gulyaev, O. P. Solonenko, P. Yu. Gulyaev, A. V. Smirnov. Hydrodynamic Features of the Impact of a Hollow Spherical Drop on a Flat Surface[J]. Technical Physics Letters, 2009, 35(10), 885-888.

DOI: 10.1134/s1063785009100034

Google Scholar

[10] Gulyaev I P, Solonenko O P. Hollow droplets impacting onto a solid surface[J]. Experiments in Fluids, 2013, 54(1): 1-12.

DOI: 10.1007/s00348-012-1432-z

Google Scholar

[11] Kumar A, Gu S. Modelling impingement of hollow metal droplets onto a flat surface[J]. International Journal of Heat and Fluid Flow, 2012, 37: 189-195.

DOI: 10.1016/j.ijheatfluidflow.2012.06.004

Google Scholar

[12] Nikolopoulos N, Strotos G, Nikas K S, et al. The effect of Weber number on the central binary collision outcome between unequal-sized droplets[J]. International Journal of Heat and Mass Transfer, 2012, 55(7): 2137-2150.

DOI: 10.1016/j.ijheatmasstransfer.2011.12.017

Google Scholar

[13] Li R, Yamaguchi A, Ninokata H. Computational fluid dynamics study of liquid droplet impingement erosion in the inner wall of a bent pipe[J]. Journal of Power and Energy Systems, 2010, 4(2): 327-336.

DOI: 10.1299/jpes.4.327

Google Scholar

[14] Shakeri S and Chandra S. Splashing of molten tin droplets on a rough steel surface [J]. Int. J. Heat Mass Transfer, 2002, 45(23): 4561-4575.

DOI: 10.1016/s0017-9310(02)00170-9

Google Scholar

[15] Brackbill J U, Kothe D B. A Continuum Method for Modeling Surface Tension[J]. Journal of computational physics, 1992, 100(2): 335-354.

DOI: 10.1016/0021-9991(92)90240-y

Google Scholar

[16] O. Ubbink, R.I. Issa. A method for capturing sharp fluid interfaces on arbitrary meshes [J]. Journal of computational physics, 1999, 153(1): 26-50.

DOI: 10.1006/jcph.1999.6276

Google Scholar