[1]
Yin F L, Zhu S, Liu J, et al. Numerical Simulation of Molten Metal Droplet Impinging in Uniform Droplet Spray Rapid Prototyping[C]/Materials Science Forum. 2012, 704: 680-684.
DOI: 10.4028/www.scientific.net/msf.704-705.680
Google Scholar
[2]
Rahimi S, Weihs D. Gelled fuel simulant droplet impact onto a solid surface[J]. Propellants, Explosives, Pyrotechnics, 2011, 36(3): 273-281.
DOI: 10.1002/prep.201000023
Google Scholar
[3]
Shinoda K, Murakami H. Splat morphology of yttria-stabilized zirconia droplet deposited via hybrid plasma spraying[J]. Journal of thermal spray technology, 2010, 19(3): 602-610.
DOI: 10.1007/s11666-009-9460-9
Google Scholar
[4]
Chien K, Golozar M, Coyle T W. Effect of Solution Chemistry on Coating Microstructure by Solution Precursor Plasma Spraying[C]/Proceedings of the 20th International Symposium on Plasma Chemistry. 2011: 24-29.
Google Scholar
[5]
Escure C, Vardelle M, Fauchals P. Experimental and theoretical study of the impact of alumina drops on cold and hot substrates[J]. Plasma Chemistry and Plasma Processing, 2003, 23(2): 185-221.
DOI: 10.1023/a:1022976914185
Google Scholar
[6]
Shinoda K., Murakami H. Splat morphology of yttria-stabilized zirconia droplet deposited via hybrid plasma spraying[J]. Journal Thermal Spray Technology, 2010, 19(3), 602–610.
DOI: 10.1007/s11666-009-9460-9
Google Scholar
[7]
Solonenko, O.P., Gulyaev, I.P., Smirnov, A.V. Plasma processing and deposition of powdered metal oxides consisting of hollow spherical particles[J]. Techical Physics Letters, 2008, 34(12), 1050–1052.
DOI: 10.1134/s1063785008120183
Google Scholar
[8]
Solonenko O P, Gulyaev I P, Smirnov A V. Thermal plasma processes for production of hollow spherical powders: theory and Experiment[J]. Journal of Thermal Science and Technology, 2011, 6(2): 219-234.
DOI: 10.1299/jtst.6.219
Google Scholar
[9]
I. P. Gulyaev, O. P. Solonenko, P. Yu. Gulyaev, A. V. Smirnov. Hydrodynamic Features of the Impact of a Hollow Spherical Drop on a Flat Surface[J]. Technical Physics Letters, 2009, 35(10), 885-888.
DOI: 10.1134/s1063785009100034
Google Scholar
[10]
Gulyaev I P, Solonenko O P. Hollow droplets impacting onto a solid surface[J]. Experiments in Fluids, 2013, 54(1): 1-12.
DOI: 10.1007/s00348-012-1432-z
Google Scholar
[11]
Kumar A, Gu S. Modelling impingement of hollow metal droplets onto a flat surface[J]. International Journal of Heat and Fluid Flow, 2012, 37: 189-195.
DOI: 10.1016/j.ijheatfluidflow.2012.06.004
Google Scholar
[12]
Nikolopoulos N, Strotos G, Nikas K S, et al. The effect of Weber number on the central binary collision outcome between unequal-sized droplets[J]. International Journal of Heat and Mass Transfer, 2012, 55(7): 2137-2150.
DOI: 10.1016/j.ijheatmasstransfer.2011.12.017
Google Scholar
[13]
Li R, Yamaguchi A, Ninokata H. Computational fluid dynamics study of liquid droplet impingement erosion in the inner wall of a bent pipe[J]. Journal of Power and Energy Systems, 2010, 4(2): 327-336.
DOI: 10.1299/jpes.4.327
Google Scholar
[14]
Shakeri S and Chandra S. Splashing of molten tin droplets on a rough steel surface [J]. Int. J. Heat Mass Transfer, 2002, 45(23): 4561-4575.
DOI: 10.1016/s0017-9310(02)00170-9
Google Scholar
[15]
Brackbill J U, Kothe D B. A Continuum Method for Modeling Surface Tension[J]. Journal of computational physics, 1992, 100(2): 335-354.
DOI: 10.1016/0021-9991(92)90240-y
Google Scholar
[16]
O. Ubbink, R.I. Issa. A method for capturing sharp fluid interfaces on arbitrary meshes [J]. Journal of computational physics, 1999, 153(1): 26-50.
DOI: 10.1006/jcph.1999.6276
Google Scholar