[1]
S. Bergman and M. Schiffer, Kernel Functions and Elliptic Differential Equations in Mathema-tical Physics, Academic Press, New York, USA (1953).
Google Scholar
[2]
A. Alonso and A. Dello Russo, Spectral approximation of variationally posed eigenvalue prob-lems by non-conforming methods, J. Comput. Appl. Math., Vol. 223(2009), pp.177-197.
DOI: 10.1016/j.cam.2008.01.008
Google Scholar
[3]
A. Bermudez, R. Rodriguez and D. Santamarina, A finite element solution of an added mass formulation for coupled fluid-soild vibrations, Numer. Math., Vol. 87(2000), pp.201-227.
DOI: 10.1007/s002110000175
Google Scholar
[4]
A. B. Andreew and T. D. Todorov, Isoparametric finite element approximation of a Steklov eigenvalue problem, IMA J. Numer. Anal., (2004), pp.309-322.
DOI: 10.1093/imanum/24.2.309
Google Scholar
[5]
Y. D. Yang, Q. Li and S. R. Li, Nonconforming finite element approximations of the Steklov eigenvalue problem, Appl. Numer. Math., Vol. 59(2009), pp.2388-2401.
DOI: 10.1016/j.apnum.2009.04.005
Google Scholar
[6]
E. M. Garau and P. Morin, Convergence and quasi-optimality of adaptive FEM for Steklov eigenvalue problems, IMA J. Anal., Vol. 31(2011), pp.914-946.
DOI: 10.1093/imanum/drp055
Google Scholar
[7]
L. Cao, L. Zhang, W. Allegretto and Y. P. Lin, Multiscale asymptotic method for Steklov eigenvalue equations in composite media, SIAM J. Numer. Anal., Vol. 51(2013), pp.273-296.
DOI: 10.1137/110850876
Google Scholar
[8]
M. G. Armentano, C. Padra and R. Rodrguezc, An hp finite element adaptive scheme to solve the Laplace model for fluid-solid vibrations, Comput. Methods Appl. Mech. Engrg., Vol. 200 (2011), pp.178-188.
DOI: 10.1016/j.cma.2010.08.003
Google Scholar
[9]
H. Bi and Y. D. Yang, A two-grid method of the non-conforming Crouzeix-Raviart element for the Steklov eighvalue promblem, Appl. Math. Comp., Vol. 217(2011), pp.9669-9678.
DOI: 10.1016/j.amc.2011.04.051
Google Scholar
[10]
C. Canuto, M. Y. Hussaini, A. Quarteroni and T. A. Zang, Spectral Methods Evolution to Complex Geometries and Applications to Fluid Dynamics, Springer (2007).
DOI: 10.1007/978-3-540-30728-0
Google Scholar
[11]
J. Shen, T. Tang and L. Wang, Spectral Methods Algorithms, Analysis and Applications, Springer, Heidelberg (2011), pp.367-410.
Google Scholar
[12]
I. Babuska and J. Osborm, Eigenvalue Problems, in: P. G. Ciarlet, J. L. Lions, (Ed. ), Finite El-ement Methods (Part 1), Handbook of Numerical Analysis, vol. 2, Elsevier Science Publishers, North-Holand (1991), pp.640-787.
Google Scholar
[13]
P. Grisvard, Elliptic Problems for Non-smooth Domains, SIAM, Philadelphia (2011).
Google Scholar
[14]
Y. D. Yang, Finite Element Methods for Eigenvalue Problems (in Chinese), Science Press, Beijing (2012).
Google Scholar