Numerical Analysis of Nanoscale Junctionless MOSFET Including Effects of Hot-Carrier Induced Interface Charges

Article Preview

Abstract:

In this work, we aim at highlighting the immunity of the junctionless Gate All Around (JLGAA) MOSFET against the induced interface tarps degradation at nanoscale level. In this context, a numerical investigation has been proposed to study the subthreshold behavior of the (JLGAA) MOSFET for ultra-low power applications. Based on 2-D numerical investigation, a small-signal parameters model for nanoscale JLGAA MOSFETs, including the hot-carrier induced interface charge effects, is developed. The numerical analysis has been used to simulate the transconductance and output-conductance in subthreshold region and to compare the performance of the investigated design and conventional GAA MOSFET, where the hot-carrier effects are included. High reliability, low fabrication cost and integration ability make JLGAA MOSFET promising candidate to improve the device reliability for the ultra-low power applications.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

137-141

Citation:

Online since:

December 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] F. Djeffal, T. Bendib: Microelectronics Journal, 42 (2011), 661-666.

Google Scholar

[2] F. Djeffal, T. Bentrcia, M.A. Abdi, T. Bendib: Microelectronics Reliability, 51 (2011), 550-555.

DOI: 10.1016/j.microrel.2010.10.002

Google Scholar

[3] A. Tsompatzoglou, C.A. Dimitriadis, R. Clerc, Q. Rafhay, G. Pananakakis, G. Ghibaudo: IEEE Trans Electron Devices, 54 (2007), 1943-(1952).

DOI: 10.1109/ted.2007.901075

Google Scholar

[4] M. Meguellati, F. Djeffal: Nuclear Instruments and Methods in Physics Research Section A, 683 (2012), 24–28.

Google Scholar

[5] T. Bendib, F. Djeffal: IEEE Trans on Electron Devices, 58 (2011), 3743–3750.

Google Scholar

[6] T-K Chiang: Trans on Electron Devices, 59 (2012), 3127-3129.

Google Scholar

[7] C. -W. Lee, A. Afzalian, N. D. Akhavan, R. Yan, I. Ferain, and J. P. Colinge: Appl. Phys. Lett, 94 (2009), 053511.

DOI: 10.1063/1.3079411

Google Scholar

[8] C. W. Lee, A. Borne, I. Ferain, A. Afzalian, R. Yan, N. D. Akhavan, P. Razavi, and J. P. Colinge: IEEE Trans. Electron Devices, 57 (2010), 620–625.

DOI: 10.1109/ted.2009.2039093

Google Scholar

[9] Lee CW, Nazarov AN, Ferain I, Dehdashti Akhavan N, Yan R, Razavi P, et al: Appl Phys Lett, 96 (2010), 102–106.

Google Scholar

[10] J. P. Duarte, S. J. Choi, D. I. Moon, and Y. K. Choi: IEEE Electron Device Lett, 32 (2011), 704–706.

Google Scholar

[11] E. Gnani, A. Gnudi, S. Reggiani, and G. Baccarani: IEEE Trans. Electron Devices, 58 (2011), 2903–2910.

DOI: 10.1109/ted.2011.2159608

Google Scholar

[12] Atlas User's Manual: Device Simulation Software, (2008).

Google Scholar