Structural and Optical Properties of Fe-Doped ZnO Nanorods

Article Preview

Abstract:

Fe-doped zinc oxide nanorods (ZnO NRs) were synthesized by ex-situ doping using spray pyrolysis technique. In this work, the undoped ZnO NRs were pre-synthesized via chemical vapor deposition using Zn powder and oxygen gas at 650 °C. The average length and diameter of the ZnO NRs are 4.1 ± 1.1 μm and 553.1 ± 89.6 nm, respectively. The average aspect ratio and areal density of ZnO NRs is 8.2 ± 2.9 and 6.2 ± 1.1 NRs/um2, respectively. Subsequently, these undoped ZnO NRs were kept in the horizontal tube furnace, whereas the dopant solution (FeCl3) of 0.05 M concentration was kept in the aerosol generator, which was located outside of the furnace. The Fe aerosol was flowed into the reactor when substrate temperature reached 650 °C to achieve ex-situ doping. At this temperature, some of the Fe atoms were driven into the NRs, forming Fe-doped ZnO NRs particularly at their outer layer. The presence of Fe 2p1/2 and Fe 2p3/2 peaks at 722.3 eV and 705.7 eV in XPS analysis indicates that Fe atoms were in the local structure of FeO. The Fe-doped ZnO NRs have poor crystal quality attributed to the low IUV/IVis ratio in room temperature PL analysis.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

151-158

Citation:

Online since:

November 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Zhong, A.H., Kitai, P. Mascer and W. Puff, J. Electrochem Soc. 140 (1993) 3644-3649.

Google Scholar

[2] K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt, and B. E. Gnade, J. Appl. Phys. 79 (1996) 7983-7990.

DOI: 10.1063/1.362349

Google Scholar

[3] S. Fündling, S. Ünsal, B. Arne, M.S. Mohamed Aid, M. Stephan, L. Shunfeng, B. Andrey, et al. Phys. Status Solidi (b) 247 (2010) 2315-2328.

Google Scholar

[4] W.P. Zheng, R.D. Zu, and Z.L. Wang, Sci 291 (2001) 1947-(1949).

Google Scholar

[5] Y. Zhang, J. Xu, Q. Xiang, H. Li, Q. Pan, and P. Xu, J. Phys. Chem. C 113 (2009) 3430-3435.

Google Scholar

[6] T.J. Kuo, C.N. Lin, C.L. Kuo, and M.H. Huang, Chem. of Mater. 19 (2007) 5143-5147.

Google Scholar

[7] W.I. Park, and G.C. Yi, Adv. Mater 16 (2004) 87-90.

Google Scholar

[8] A.B. Djurisic, and Y. H Leung, Small, 2 (2006) 944-961.

Google Scholar

[9] J.H. He, C.S. Lao, L.J. Chen, D. Davidovic and Z.L. Wang, J. American Chem. Soc. 127 (2005) 16376-16377.

Google Scholar

[10] V.A.L. Roy, A.B. Djurisic, H. Liu, X.X. Zhang, Y.H. Leung, M.H. Xie, and C. Surya, Appl. Phys. Lett. 84 (2004) 756-758.

Google Scholar

[11] M.V. Limaye, et al, J. Solid State Chem. 184 (2011) 391-400.

Google Scholar

[12] A. Ismardi, T.Y. Tiong, C.F. Dee et al., presented at the ICSE 2010 Proc. 2010, Melaka, Malaysia, (unpublished), (2010) 260-262.

Google Scholar

[13] G.Z. Xing, J.B. Yi, J.G. Tao, et al., Adv. Mater. 20 (2008) 3521-3527.

Google Scholar

[14] P. Mohanty, B. Kim, J. Park, Mater. Sci. Eng. B 138 (2007) 224-227.

Google Scholar

[15] K.W. Liu, M. Sakurai, M. Aono, J. Appl. Phys. 108 (2010) 1-5.

Google Scholar

[16] Q. Ahsanulhaq, A. Umar, and Y.B. Hahn, Nanotechnology 18 (2007) 115603 (7pp).

Google Scholar

[17] C.H. Xia, C.G. Hu, Y.S. Tian, P. Chen, B.Y. Wan, and J. Xu, Solid State Sci. (2011) 388-393.

Google Scholar

[18] Z.C. Chen, L.J. Zhuge, X.M. Wu, Y.D. Meng, Thin Solid Films 515 (2007) 5462-5465.

Google Scholar

[19] C.Z. Wang, Z. Chen, Y. He, L.Y. Li, D. Zhang, Appl. Surf. Sci. 255 (2009) 6881-6887.

Google Scholar

[20] B. Wang, C.H. Xia, J. Iqbal, N. Tang, Z.R. Sun, Y. Lv, and L. Wu, Solid State Sci 11 (2009) 1419-1422.

Google Scholar

[21] B. Zhang, S.M. Zhou, H.W. Wang, and Z.L. Du, Chinese Sci. Bulletin 53 (2008) 1639-1643.

Google Scholar

[22] M. N Islam, TB Ghosh, KL Chopra, and HN Acharya, Thin Solid Films, 280 (1996) 20-25.

Google Scholar

[23] M. Chen, X. Wang, Y. Yu, Y.H. Pei, Z. L. Bai, X. D. Sun, C, and L.S. Wen, Appl. Surf. Sci. 158 (2000) 134-140.

Google Scholar

[24] A. Gupta, M. Omari, and N. Kouklin, J. Appl. Phyc. 103 (2008) 124312.

Google Scholar

[25] Y.H. Zheng, L.R. Zheng, Y.Y. Zhan, X.Y. Lin, Q. Zheng, and K.M. Wei, Inorg. Chem. 46 (2007) 6980-6986.

DOI: 10.1021/ic700688f

Google Scholar

[26] K. Vanheusden, C.H. Seager, W.L. Warren, D.R. Tallant, and J.A. Voigt, Appl. Phys. Lett. 68 (1996) 403-405.

DOI: 10.1063/1.116699

Google Scholar

[27] X.L. Wu, G.G. Siu, C. L Fu, and H.C. Ong, Appl. Phys. Lett. 78 (2001) 2285-2287.

Google Scholar