Research on Applied Technology with the Characteristic of the Spatial Fresnel Diffraction Field of a Circle Aperture Illuminated by a Hyperbolic Secant Optical Pulse

Article Preview

Abstract:

Based on the Fresnel diffraction theory and the principle of Fourier transformation, an equation is put forward to analyze the spatial diffraction intensity distribution of a circle aperture illuminated by a hyperbolic secant optical femtosecond pulse. The spatial diffraction intensity distributions are determined by the distance, the radius of the circle aperture, the Fresnel number, the width and the central wavelength of the hyperbolic optical pulse. Number calculation shows that when the radius of the circle aperture is definite, the spatial diffraction intensity is a function of the distance z. If the distance is definite, the spatial diffraction intensity is a function of the radius of the circle aperture. In a definite extent the spatial diffraction intensity remains approximately a constant. A constant spatial intensity distribution is good for optical imaging and laser fusion.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

473-476

Citation:

Online since:

December 2013

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Trester, Computer-simulated Fresnel diffraction using the Fourier transform, Computing in Science & Engineerring, Vol. 1(5), pp.77-83, (1999).

DOI: 10.1109/5992.790591

Google Scholar

[2] L. Carretero, M. Pérez Molina, P.A. González, S.B. Escarré, A.F. Gil, R. Madrigal, A.M. Cases, Vectorial diffraction analysis of near-field focusing of perfect black Fresnel zone plates under various polarization states, J. Lightwave Technology, Vol. 29(6), pp.822-829, (2011).

DOI: 10.1109/jlt.2011.2105857

Google Scholar

[3] Ronald Bergstern, Susun Huberty, White-light Fresnel diffraction by a circle aperture, J. Opt. Soc. Am. , vol. 67, pp.643-646, (1977).

DOI: 10.1364/josa.67.000643

Google Scholar

[4] C. J. R. Sheppard, M. Hrynevych, Diffraction by a circular aperture: a generalization of Fresnel diffraction theory, J. Opt. Soc. Am. A, vol. 9, pp.274-281, (1992).

DOI: 10.1364/josaa.9.000274

Google Scholar

[5] Min Gu, X.S. Gan, Fresnel diffraction by circular and serrated apertures illuminated with an ultrashort pulsed-laser beam, J. Opt. Soc. Am. A, vol. 13, pp.771-778, (1996).

DOI: 10.1364/josaa.13.000771

Google Scholar

[6] S. Olupitan, K. Senthilnathan, P.R. Babu, S.S. Aphale, K. Nakkeeran Generation of a train of ultrashort pulses near-infrared regime in a tapered photonic crystal fiber using raised-cosine pulses, , Photonics Journal, IEEE, vol. 4, pp.1420-1437, (2012).

DOI: 10.1109/jphot.2012.2208622

Google Scholar

[7] L. Davis, Y. Lin, Propagation of optical pulses in a saturable absorber, ,  Quantum Electronics, IEEE Journal of,Vol. 9, pp.1135-1138, (1973).

DOI: 10.1109/jqe.1973.1077435

Google Scholar

[8] H. Taga, M. Suzuki, N. Edagawa, H. Tanaka, Y. Yoshida, S. Yamamoto, S. Akiba, H. Wakabayashi, Multi-thousand kilometer optical soliton data transmission experiments at 5 Gb/s using an electroabsorption modulator pulse generator, , Lightwave Technology Journal of, Vol. 12, pp.231-236, (1994).

DOI: 10.1109/50.350599

Google Scholar

[9] S. H. Lawan, D. S. Shu'aibu, S. A. Babale, Hyperbolic-secant pulse propagation in a single mode optical fiber system, International Journal of Computer Applications, Vol. 58(12), pp.23-27, (2012).

DOI: 10.5120/9335-3645

Google Scholar

[10] X. Zhang, A. Xiang, K. Cheng, Evolution of hyperbolic-secant optical pulses towards wave breaking in quintic nonlinear fibers, Opt. Laser Technol., Vol. 44(3), pp.669-674, (2012).

DOI: 10.1016/j.optlastec.2012.04.010

Google Scholar