[1]
DenHartog, J.P., Mechanical Vibrations, 4TH ed., McGraw Hill, New York, (1956).
Google Scholar
[2]
Nigol, O. and P.G. Buchan, Conductor Galloping Part I : Den Hartog Mechanism. Power Apparatus and Systems, IEEE Transactions. PAS-100(1981) 699-707.
DOI: 10.1109/tpas.1981.316921
Google Scholar
[3]
Nigol, O. and P.G. Buchan, Conductor Galloping-Part II: Torsional Mechanism. Power Apparatus and Systems, IEEE Transactions. PAS-100(1981) 708-720.
DOI: 10.1109/tpas.1981.316922
Google Scholar
[4]
Zhang, Q., N. Popplewell, and A.H. Shah, Galloping of bundle conductor. Journal of Sound and Vibration. 234(2000) 115~134.
DOI: 10.1006/jsvi.1999.2858
Google Scholar
[5]
Yu, P., A.H. Shah, and N. Popplewell, Inertially Coupled Galloping of Iced Conductors journal of Applied Mechanics-Transactions of the Asme. 59(1992) 140-144.
DOI: 10.1115/1.2899419
Google Scholar
[6]
Yu, P., N. Popplewell, and A.H. Shah, Instability trends of inertially coupled galloping: Part II: Periodic vibrations. Journal of Sound and vibration. 183(1995) 679-691.
DOI: 10.1006/jsvi.1995.0179
Google Scholar
[7]
Yu, P., N. Popplewell, and A.H. Shah, Instability trends of inertially coupled galloping: Part I: Initiation. Journal of Sound and vibration. 183(1995) 663-678.
DOI: 10.1006/jsvi.1995.0278
Google Scholar
[8]
Luongo, A., D. Zulli, and G. Piccardo, A linear curved-beam model for the analysis of galloping in suspenden cables. Journal of Mechanics of Materials and Structures. 2(2007) 675-694.
DOI: 10.2140/jomms.2007.2.675
Google Scholar
[9]
Luongo, A., D. Zulli, and G. Piccardo, Analytical and numerical approaches to nonlinear galloping of internally resonant suspended cables. Journal of Sound and vibration. 315(2008) 375-393.
DOI: 10.1016/j.jsv.2008.03.067
Google Scholar
[10]
Luongo, A., D. Zulli, and G. Piccardo, On the effect of twist angle on nonlinear galloping of suspended cables. Computers & Structures. 87(2009) 1003-1014.
DOI: 10.1016/j.compstruc.2008.04.014
Google Scholar
[11]
Irvine, H.M., Cable structures. 1981, Cambridge: The MIT press.
Google Scholar
[12]
DenHartog, J.P., Transmission line vibration due to sleet. AIEE Transaction. 51(1932) 1074-1076.
Google Scholar
[13]
MA, W. y., GU, M., Analysis Method of Galloping in arbitrary directions of Iced Conductors. Journal of Tongji University. 38(2010) 130-134.
Google Scholar
[14]
Kim, H.S., Aerodynamic Instability of Inclined Cables, in Civil Engineering2001, University of Ottawa: Ottawa.
Google Scholar
[15]
G. Bartoli, et al., Dynamics of cable under wind action: Wind tunnel experimental analysis. Dynamics of cable under wind action: Wind tunnel experimental analysis. 940 (2006) 259-273.
DOI: 10.1016/j.jweia.2006.01.002
Google Scholar
[16]
Luongo, A. and G. Piccardo, A Continuous Approach to the Aeroelastic Stability of Suspended Cables in 1 : 2 Internal Resonance. Journal of Vibration and Control. 14(2008) 135-157.
DOI: 10.1177/1077546307079404
Google Scholar
[17]
Srinil, N. and G. Rega, Nonlinear longitudinal/transversal modal interactions in highly extensible suspended cables. Journal of Sound and vibration. 310(2008) 230-242.
DOI: 10.1016/j.jsv.2007.07.056
Google Scholar
[18]
Richardson, A.S., Predicting Galloping Amplitudes: II. Journal of Engineering Mechanics. 114(1988) 1945-(1952).
DOI: 10.1061/(asce)0733-9399(1988)114:11(1945)
Google Scholar
[19]
R.D. Blevins, Flow-induced Vibration. Second ed. Van Nostrand Reinhold, New York, (1990).
Google Scholar
[20]
Jones, K.F., Coupled Vertical and Horizontal Galloping. Journal of Engineering Mechanics. 118(1992) 92-107.
Google Scholar
[21]
Luongo, A. and G. Piccardo, Linear instability mechanisms for coupled translational galloping. Journal of Sound and Vibration. 288(2005) 1027-1047.
DOI: 10.1016/j.jsv.2005.01.056
Google Scholar
[22]
Luongo, A. and G. Piccardo, Non-linear galloping of sagged cables in 1: 2 internal resonance. Journal of Sound and Vibration. 214(1998) 915-940.
DOI: 10.1006/jsvi.1998.1583
Google Scholar
[23]
Yu, P., et al., Three-Degree-of-Freedom Model for Galloping. Part II: Solutions. Journal of Engineering Mechanics. 119(1993) 2426-2448.
DOI: 10.1061/(asce)0733-9399(1993)119:12(2426)
Google Scholar