[1]
WOOD A.J., WOLLENBERG B.F.: Power generation operation and control (Wiley, New York, USA, 1996, 2nd edn. ).
Google Scholar
[2]
P. Aravindhababu and K.R. Nayar, Economic dispatch based on optimal lambda using radial basis function network, International Journal of Electrical Power & Energy Systems, vol. 24, pp.551-556, 10. (2002).
DOI: 10.1016/s0142-0615(01)00063-1
Google Scholar
[3]
VICTOIRE T.A.A., JEYAKUMAR A.E.: Reserve constrained dynamic dispatch of units with valve-point effects, IEEE Trans. Power Syst., 2005, 20, (3), p.1273–1282 on, vol. 8, pp.1325-1332, (1993).
DOI: 10.1109/tpwrs.2005.851958
Google Scholar
[4]
N. Sinha, R. Chakrabarti and P.K. Chattopadhyay, Evolutionary programming techniques for economic load dispatch, Evolutionary Computation, IEEE Transactions on, vol. 7, pp.83-94, (2003).
DOI: 10.1109/tevc.2002.806788
Google Scholar
[5]
D.C. Walters and G.B. Sheble, Genetic algorithm solution of economic dispatch with valve point loading, Power Systems, IEEE Transactions on, vol. 8, pp.1325-1332, (1993).
DOI: 10.1109/59.260861
Google Scholar
[6]
A.I. El-Gallad, M. El-Hawary, A.A. Sallam and A. Kalas, Swarm intelligence for hybrid cost dispatch problem, Electrical and Computer Engineering, 2001. Canadian Conference on, vol. 2, pp.753-757 vol. 2, (2001).
DOI: 10.1109/ccece.2001.933536
Google Scholar
[7]
A.I. Selvakumar and K. Thanushkodi, A New Particle Swarm Optimization Solution to Nonconvex Economic Dispatch Problems, Power Systems, IEEE Transactions on, vol. 22, pp.42-51, (2007).
DOI: 10.1109/tpwrs.2006.889132
Google Scholar
[8]
K.M. Passino, Biomimicry of bacterial foraging for distributed optimization and control, Control Systems Magazine, IEEE, vol. 22, pp.52-67, (2002).
DOI: 10.1109/mcs.2002.1004010
Google Scholar
[9]
PANIGRAHI B.K., PANDI V.R.: Bacterial foraging optimisation: Nelder-Mead hybrid algorithm for economic load dispatch, IET Gener. Transm. Distrib., 2008, 2, (4), p.556–565.
DOI: 10.1049/iet-gtd:20070422
Google Scholar
[10]
I.A. Farhat ,M.E. El-Hawary: Dynamic adaptive bacterial foraging algorithm for optimum economic dispatch with valve-point effects and wind power. IET Gener. Transm. Distrib., 2010, Vol. 4, Iss. 9, p.989–999.
DOI: 10.1049/iet-gtd.2010.0109
Google Scholar
[11]
H. Beyer, The Theory of Evolution Strategies, G. Rozenberg, T. B¨ack,A. Eiben, J. Kok, and H. Spanik, Eds. Springer, (2001).
Google Scholar
[12]
ALHAJRI M.F., ALRASHIDI M.R., EL-HAWARY M.E.: Hybrid particle swarm optimization approach for optimal distribution generation sizing and allocation in distribution systems,. Canadian Conf. on Electr. Comp. Eng. (CCECE 2007), 2007, p.1290–1293.
DOI: 10.1109/ccece.2007.328
Google Scholar
[13]
JOINES J.A., HOUCK C.R.: On the use of non-stationary penalty functions to solve nonlinear constrained optimization problems with GA's,. Proc. First IEEE Conf. on Evolutionary Computation, 1994 (IEEE World Congress on Computational Intelligence), 1994, vol. 2, p.579.
DOI: 10.1109/icec.1994.349995
Google Scholar
[14]
MICHALEWICZ Z., SCHOENAUER M.: Evolutionary algorithms for constrained parameter optimization problems, Evol. Comput., 1996, 4, (1), p.1–32.
DOI: 10.1162/evco.1996.4.1.1
Google Scholar
[15]
KOZIEL S., MICHALEWICZ Z.: Evolutionary algorithms, homomorphous mappings, and constrained parameter optimization, Evol. Comput., 1999, 7, (1), p.19–44.
DOI: 10.1162/evco.1999.7.1.19
Google Scholar
[16]
SU C., LIN C.: New approach with a Hopfield modeling framework to economic dispatch, IEEE Trans. Power Syst., 2000, 15, (2), p.541–545.
DOI: 10.1109/59.867138
Google Scholar