Thermal Characterization Study of Eucalyptus Sourced from South China with Thermo-Kinetic Analysis Method

Article Preview

Abstract:

In this study, thermogravimetric analysis and kinetic analysis techniques were used to investigating the pyrolysis characteristic of the eucalyptus feedstock sourced from South China. The thermogravimetric analysis results indicate that the pyrolysis of eucalyptus sample occurred in three main stages which are the moisture vaporization stage, the volatile matter release stage and the char decomposition stage. The kinetic analysis results show that C-R kinetic method fits to the pyrolysis characterizations of eucalyptus. In addition, the effects of different constant heating rates on the pyrolysis behavior and kinetic parameters have been also studied in this paper.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 860-863)

Pages:

479-484

Citation:

Online since:

December 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K.S. Shanmukharadhya: Energy and Fuels Vol. 21 (2007), p.1895–(1900).

Google Scholar

[2] H. Yang, R. Yan, H. Chen, C. heng, D.H. Lee and D.T. Liang: Energy and Fuels Vol. 20 (2006), p.388–393.

Google Scholar

[3] J. Manganaro, B. Chen, J. Adeosun, S. Lakhapatri, D. Fa-vetta and A. Lawal: Energy and Fuels Vol. 25 (2011), p.2711–2720.

DOI: 10.1021/ef200327e

Google Scholar

[4] C.J. Mulligan, L. Strezov and V. Strezov: Energy and Fuels Vol. 24 (2010), p.46–52.

Google Scholar

[5] A.N. Shebani, A.J. van Reenen and M. Meincken: Thermochimica Acta Vol. 471 (2008), p.43–45.

Google Scholar

[6] K Elyounssi, F.X. Collard, J.N. Mateke and J. Blin: Fuel Vol. 96 (2012), p.161–167.

DOI: 10.1016/j.fuel.2012.01.030

Google Scholar

[7] L. Aguiar, F. Márquez-Montesinos, A. Gonzalo, J.L. Sánchez and J. Arauzo: Journal of Analytical and Applied Pyrolysis Vol. 83 (2008), p.124–130.

DOI: 10.1016/j.jaap.2008.06.009

Google Scholar

[8] R. Mehrabian, R. Scharler and I. Obernberger: Fuel Vol. 93(2012), p.567–575.

Google Scholar

[9] T. Damartzis, A. Zabaniotou: Renewable and Sustainable Energy Reviews Vol. 15 (2011), p.366–378.

Google Scholar

[10] M.A. Lopez-Velazquez, V. Santes, J. Balmaseda and E. Torres-Garcia: Journal of Analytical and Applied Pyrolysis Vol. 99 (2013), p.170–177.

DOI: 10.1016/j.jaap.2012.09.016

Google Scholar

[11] A.W. Coats, J.P. Redfern: Nature Vol. 201(1964), p.68–69.

Google Scholar

[12] A.V. Bridgwater, D. Meier and D. Radlein: Org. Geochem Vol. 30(1999), p.1479–1493.

Google Scholar

[13] D. Mohan, C.U. Pittman and P.H. Steele: Energy Fuels Vol. 20(2006), p.848–889.

Google Scholar

[14] J.E. White, W.J. Catallo and B. L Legendre:J. Anal. Appl. Pyrolysis Vol. 91(2011), pp.1-33.

Google Scholar

[15] J.A. Caballero, R. Font, A. Marcilla and J.A. Conesa: J. Anal. Appl. Pyrol. Vol. 40–41(1997b), p.433–450.

Google Scholar

[16] D. Li, L. Chen, X. Yi, X. Zhang and N. Ye: Technol. Vol. 101(2010), p.7131–7136.

Google Scholar

[17] AJ Tsamba, W Yang and W Blasiak: Fuel Process Technol Vol. 87(2006), p.523–30.

Google Scholar

[18] H.H. Sait, A. Hussain, A.A. Salema and F. N. Ani: Bioresource Technology Vol. 118 (2012) p.382–389.

DOI: 10.1016/j.biortech.2012.04.081

Google Scholar