[1]
R. Habibi, J. Kopyscinski, M. S. Masnadi, J. Lam, J. R. Grace, C. A. Mims, et al., Co-gasification of Biomass and Non-biomass Feedstocks: Synergistic and Inhibition Effects of Switchgrass Mixed with Sub-bituminous Coal and Fluid Coke During CO2 Gasification, Energy & Fuels, vol. 27, pp.494-500, (2013).
DOI: 10.1021/ef301567h
Google Scholar
[2]
N. E. Administration. (2012). The twelfth five-year plan for bioenergy development of the People's Republic of China. Available: http: /www. gov. cn/zwgk/2012-12/28/content_2301176. htm.
Google Scholar
[3]
A. O. Aboyade, M. Carrier, E. L. Meyer, H. Knoetze, and J. F. Görgens, Slow and pressurized co-pyrolysis of coal and agricultural residues, Energy Conversion and Management, vol. 65, pp.198-207, 1/ (2013).
DOI: 10.1016/j.enconman.2012.08.006
Google Scholar
[4]
A. O. Aboyade, J. F. Görgens, M. Carrier, E. L. Meyer, and J. H. Knoetze, Thermogravimetric study of the pyrolysis characteristics and kinetics of coal blends with corn and sugarcane residues, Fuel Processing Technology, vol. 106, pp.310-320, 2/ (2013).
DOI: 10.1016/j.fuproc.2012.08.014
Google Scholar
[5]
S. Yuan, Z. H. Dai, Z. J. Zhou, X. L. Chen, G. S. Yu, and F. C. Wang, Rapid co-pyrolysis of rice straw and a bituminous coal in a high-frequency furnace and gasification of the residual char, Bioresour Technol, vol. 109, pp.188-197, Apr (2012).
DOI: 10.1016/j.biortech.2012.01.019
Google Scholar
[6]
H. Haykiri-Acma and S. Yaman, Interaction between biomass and different rank coals during co-pyrolysis, Renewable Energy, vol. 35, pp.288-292, (2010).
DOI: 10.1016/j.renene.2009.08.001
Google Scholar
[7]
Ö. Onay, E. Bayram, and Ö. M. Koçkar, Copyrolysis of Seyitömer−Lignite and Safflower Seed: Influence of the Blending Ratio and Pyrolysis Temperature on Product Yields and Oil Characterization, Energy & Fuels, vol. 21, pp.3049-3056, 2007/09/01 (2007).
DOI: 10.1021/ef700230s
Google Scholar
[8]
H. Haykiri-Acma and S. Yaman, Synergy in devolatilization characteristics of lignite and hazelnut shell during co-pyrolysis, Fuel, vol. 86, pp.373-380, Feb (2007).
DOI: 10.1016/j.fuel.2006.07.005
Google Scholar
[9]
J. M. Jones, M. Kubacki, K. Kubica, A. B. Ross, and A. Williams, Devolatilisation characteristics of coal and biomass blends, Journal of Analytical and Applied Pyrolysis, vol. 74, pp.502-511, (2005).
DOI: 10.1016/j.jaap.2004.11.018
Google Scholar
[10]
H. B. Vuthaluru, Investigations into the pyrolytic behaviour of coal/biomass blends using thermogravimetric analysis, Bioresour Technol, vol. 92, pp.187-195, (2004).
DOI: 10.1016/j.biortech.2017.08.105
Google Scholar
[11]
C. Meesri and B. Moghtaderi, Lack of synergetic effects in the pyrolytic characteristics of woody biomass/coal blends under low and high heating rate regimes, Biomass and Bioenergy, vol. 23, pp.55-66, (2002).
DOI: 10.1016/s0961-9534(02)00034-x
Google Scholar
[12]
E. Kastanaki, D. Vamvuka, P. Grammelis, and E. Kakaras, Thermogravimetric studies of the behavior of lignite–biomass blends during devolatilization, Fuel Processing Technology, vol. 77–78, pp.159-166, (2002).
DOI: 10.1016/s0378-3820(02)00049-8
Google Scholar
[13]
Y. G. Pan, E. Velo, and L. Puigjaner, Pyrolysis of blends of biomass with poor coals, Fuel, vol. 75, pp.412-418, (1996).
DOI: 10.1016/0016-2361(95)00275-8
Google Scholar
[14]
E. Biagini, F. Lippi, L. Petarca, and L. Tognotti, Devolatilization rate of biomasses and coal-biomass blends: an experimental investigation, Fuel, vol. 81, pp.1041-1050, May (2002).
DOI: 10.1016/s0016-2361(01)00204-6
Google Scholar
[15]
D. Vamvuka, N. Pasadakis, and E. Kastanaki, Kinetic modeling of coal/agricultural by-product blends, Energy & Fuels, vol. 17, pp.549-558, May-Jun (2003).
DOI: 10.1021/ef020179u
Google Scholar
[16]
C. X. Chen, X. Q. Ma, and Y. He, Co-pyrolysis characteristics of microalgae Chlorella vulgaris and coal through TGA, Bioresour Technol, vol. 117, pp.264-273, Aug (2012).
DOI: 10.1016/j.biortech.2012.04.077
Google Scholar
[17]
Z. Q. Wu, S. Wang, J. Zhao, L. Chen, and H. Meng, A Kinetic Study of Co-Pyrolysis of Coal and Spent Mushroom Compost (SMC), Advanced Materials Research, vol. 781-784, pp.2406-2410, (2013).
DOI: 10.4028/www.scientific.net/amr.781-784.2406
Google Scholar
[18]
M. Garcı̀a-Pèrez, A. Chaala, J. Yang, and C. Roy, Co-pyrolysis of sugarcane bagasse with petroleum residue. Part I: thermogravimetric analysis, Fuel, vol. 80, pp.1245-1258, (2001).
DOI: 10.1016/s0016-2361(00)00215-5
Google Scholar