Synthesis and Characterization of Sulfonated Polybenzimidazole (SPBI) Copolymer for Polymer Exchange Membrane Fuel Cell

Article Preview

Abstract:

A diverse sulfonated polybenzimidazole copolymer (SPBI) as proton exchange membrane was synthesiszed via one-step high temperature polymerization method with 3,3-diaminobenzidine (DABD), 5-sulfoisophthalic acid (SIPA), 4,4-sulfonyldibenzoic acid (SDBA) and biphenyl-4,4-dicarboxylic acid (BDCA). The SPBI membrane was prepared through a direct hot-casting and in situ phase inversion technique. Characterization tests were carried out on the membranes including surface morphology, distribution of elements on the membrane, determination of functional groups, thermal stability, ion exchange capacity, water uptake rate and proton conductivity. The as-synthesized SPBI membrane displayed a smooth surface via scanning electron microscopy (SEM) analysis which is thermally stable up to 443 °C. The SPBI membrane showed higher water uptake rate (WUR) and proton conductivity though it had lower ion exchange capacity (IEC) value compared to recast Nafion membrane. The proton conductivity of the SPBI membrane with IEC of 0.60 mmol/g was 4.50 × 10-2 S/cm at 90 °C. This study shows that the SPBI membrane has great potential in polymer exchange membrane fuel cell (PEMFC) applications.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 860-863)

Pages:

803-806

Citation:

Online since:

December 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S.J. Peighambardoust, S. Rowshanzamir and M. Amjadi: Int. J. Hydrogen Energ. Vol. 35 (2010), p.9349.

Google Scholar

[2] D. Brandell, J. Karo, A. Liivat and J.O. Thomas: J: J. Mol. Model. Vol. 13 (2007), p.1039.

Google Scholar

[3] K.D. Kreuer: J. Membrane Sc. Vol. 185 (2000), p.29.

Google Scholar

[4] J. Roziere, D.J. Jones, M. Marrony, X. Glipa and B. Mula: Solid State Ionics Vol. 145 (2001), p.61.

DOI: 10.1016/s0167-2738(01)00914-6

Google Scholar

[5] F. Liu, B. Yi, D. Xing, J. Yu, and H. Zhang: J. Membrane Sc. Vol. 212 (2003), p.213.

Google Scholar

[6] D. Cromadzki, P. Cernoch, M. Janata, V. Kudela, F. Nallet, O. Diat, and P. Stepanek: Eup. Polym. J. Vol. 42. (2006), p.2486.

Google Scholar

[7] C. Manea and M. Mulder: J. Membrane Sc. Vol. 206 (2002), p.443.

Google Scholar

[8] D.J. Jones and J. Roziere: J. Membrane Sc. Vol. 185 (2001), p.41.

Google Scholar

[9] J. Kim, B. Kim, and B. Jung: J. Membrane Sc. Vol. 207 (2002), p.129.

Google Scholar

[10] H. Bai and W.S.W. Ho: J. Taiwan Inst. Chem. Vol. 40 (2009), p.260.

Google Scholar

[11] L. Xiao, H. Zhang, E. Scanlon, L.S. Ramanathan, E.W. Choe, D. Rogers, T. Apple and B.C. Benicewicz: Chem. Mater. Vol 17 (2005), p.5328.

DOI: 10.1021/cm050831+

Google Scholar

[12] Y. Chikashige, Y. Chikyu, K. Miyateke and M. Watanebe: Macromolecules Vol. 38 (2005), p.7121.

Google Scholar

[13] A. Roy, H.S. Lee and J.E. McGrath: Polym. Vol. 49 (2008), p.5037.

Google Scholar

[14] Y. Shen, J. Xi, X. Qiu and W. Zhu: Electrochem. Acta Vol. 52 (2007), p.6956.

Google Scholar