[1]
H. Inaba and S. Morita. Flow and cold heat-storage characteristics of phase-change emulsion in a coiled double tube heat exchanger. J. Heat Trans. 117 (1995) 440–446.
DOI: 10.1115/1.2822541
Google Scholar
[2]
H. Inaba and S. Morita. Cold heat-release characteristics of phase-change emulsion by air-emulsion direct contact heat exchange method. Int. J. Heat Mass Trans. 39 (1996) 1797–1803.
DOI: 10.1016/0017-9310(95)00291-x
Google Scholar
[3]
B. He, E. M Gustafsson, F. Setterwall. Tetradecane and hexadecane binary mixtures as phase change materials (PCMs) for cool storage in district cooling systems. Energy. 24 (1999) 15–28.
DOI: 10.1016/s0360-5442(99)00055-9
Google Scholar
[4]
T. Kousksou, A. Jamil, S. Gibout, Y. Zeraouli. Thermal analysis of phase change emulsion. J Therm Anal Calorim. 96 (2009) 841–852.
DOI: 10.1007/s10973-009-0058-8
Google Scholar
[5]
Li Huang, Christian Doetsch, Clemens Pollerberg. Low temperature paraffin phase change emulsions. international journal of refrigeration. 33(2010) 1583-1589.
DOI: 10.1016/j.ijrefrig.2010.05.016
Google Scholar
[6]
Patrick Fernandez, Valerie Andre, Jens Rieger, Angelika Kuhnle. Nano-emulsion formation by emulsion phase inversion. Colloids and Surfaces A: Physicochem. Eng. Aspects. 251 (2004) 53–58.
DOI: 10.1016/j.colsurfa.2004.09.029
Google Scholar
[7]
K. Golemanov, S. Tcholakova, N. D Denkov, T. Gurkov. Selection of surfactants for stable paraffin-in-water dispersions, undergoing solid–liquid transition of the dispersed particles. Langmuir. 22(8) (2006) 3560–3569.
DOI: 10.1021/la053059y
Google Scholar
[8]
P. Schalbart, M. Kawaji, K. Fumoto. Formation of tetradecane nanoemulsion by low-energy emulsification methods. In: 8th IIR conference on phase change materials and slurries for refrigeration and air conditioning, Karlsruhe, (2009).
DOI: 10.1016/j.ijrefrig.2010.09.002
Google Scholar
[9]
H. Xu, R. Yang, Y.P. Zhang, Z. Huang, J. Lin, X. Wang. Thermal physical properties and key influence factors of phase change emulsion. Chinese Sci Bull. 50(1) (2005) 88–93.
DOI: 10.1360/04we0123
Google Scholar
[10]
L. Huang, Petermann M, Doetsch C. Evaluation of paraffin/water emulsion as a phase change slurry for cooling applications. Energy. 34 (2009) 45–55.
DOI: 10.1016/j.energy.2009.03.016
Google Scholar
[11]
L. Huang, P. Noeres, M. Petermann, C. Doetsch. Experimental study on heat capacity of paraffin/water phase change emulsion. Energy Convers Manage. 51(6) (2010) 1264–12699.
DOI: 10.1016/j.enconman.2009.12.038
Google Scholar
[12]
B. J Chen, X. Wang, Y.P. Zhang, H. Xu, R. Yang. Experimental research on laminar flow performance of phase change emulsion. Appl Therm Eng 26(11–12) (2006) 38–45.
Google Scholar
[13]
E.J. Acosta. The HLD-NAC equation of state for microemulsions formulated with nonionic alcohol ethoxylate and alkylphenol ethoxylate surfactants. Colloids Surf. A Physicochem. Eng. Aspects. 320(1-3) (2008) 193-204.
DOI: 10.1016/j.colsurfa.2008.01.049
Google Scholar
[14]
ICI Americas. The HLB system—a time saving guide to emulsifier selection. Wilmington: Chemmunique ICI Americas, (1976).
Google Scholar
[15]
L.O. Orafidiya, A.F. Oladimeji. Determination of the required HLB values of some essential oils. Int J Pharm. 237(1–2) (2002) 241–249.
DOI: 10.1016/s0378-5173(02)00051-0
Google Scholar
[16]
W Lu, S.A. Tassou. Experimental study of the thermal characteristics of phase change slurries for active cooling. Applied Energy. 91 (2012) 366–374.
DOI: 10.1016/j.apenergy.2011.10.004
Google Scholar
[17]
B.S. Awad, Alquaity, A. Salem. Al-Dini and Bekir S. Yilbas. Investigation into thermal performance of nanosized phase change material (PCM) in microchannel flow. International Journal of Numerical Methods for Heat & Fluid Flow. Vol. 23. No. 2: 233-247(2013).
DOI: 10.1108/09615531311293443
Google Scholar
[18]
D. Zou, R. Xiao, C. Huang, K. Dong, S. He, Z. Feng. The thermal performance of a Novel Phase Change Emulsion. Energy Sources, Part A. 33 (2011) 265–274.
DOI: 10.1080/15567030902967876
Google Scholar
[19]
S.P. Jang, S.U.S. Choi. Effects of various parameters on nanofluid thermal conductivity. Journal of Heat Transfer. 129 (2007) 617–623.
DOI: 10.1115/1.2712475
Google Scholar
[20]
S. Lee, S.U.S. Choi, S. Li and Eastan, J. A. Measuring thermal conductivity of fluids containing oxide nanoparticles. J. Heat Trans. 121 (1999) 280–289.
DOI: 10.1115/1.2825978
Google Scholar
[21]
J. A. Eastman, S.U.S. Choi, S. Li, W. Yu and L. J. Thompson. Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Appl. Phys. 78 (2001) 718–720.
DOI: 10.1063/1.1341218
Google Scholar
[22]
J.L. Zeng, L.X. Sun, F. Xu, Z. C. Tan, Z. H. Zhang, J. Zhang and T. Zhang. Study of a PCM based energy storage system containing Ag nanoparticels. Journal of Thermal Analysis and Calorimetry. Vol. 87(2) 369–373.
DOI: 10.1007/s10973-006-7783-z
Google Scholar
[23]
C.J. Ho, J.Y. Gao. Preparation and thermophysical properties of nanoparticle-in-paraffin emulsion as phase change material. International Communications in Heat and Mass Transfer. 36 (2009) 467–470.
DOI: 10.1016/j.icheatmasstransfer.2009.01.015
Google Scholar