Effects of Additional Mg2+ on the Growth and Lipid Accumulation of Monoraphidium Sp. FXY-10 under Mixotrophic Conditions

Article Preview

Abstract:

The effects of additional Mg2+ on the growth and lipid accumulation of the microalgae Monoraphidium sp. FXY-10 under mixotrophic conditions were investigated. 100 μmol Mg2+ were added to the growth media during the stationary growth phase. Compared with the control (35.25%), the highest lipid content reached up to 37.13% biomass after Mg2+ was added to the media. Moreover, the higher lipid productivity of 79.83 mg L1 d1 and the biomass productivity of 214.65 mg L1 d1 were attained in the Mg2+-supplemented cultures, as compared with cultures without supplemented (72.95 mg L1 d1 and 179.28 mg L1 d1, respectively). The use of Mg2+ supplements were proven to stimulate cell regrowth, prolong the stationary phase, and promote lipid accumulation in Monoraphidium sp. FXY-10.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 860-863)

Pages:

920-927

Citation:

Online since:

December 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G. Huang, F. Chen, D. Wei, X. Zhang and G. Chen, Biodiesel production by microalgal biotechnology, Appl Energy. 87 (2010) 38-46.

DOI: 10.1016/j.apenergy.2009.06.016

Google Scholar

[2] T.M. Mata, A.A. Martins, N.S. Caetano, Microalgae for biodiesel production and other applications: A review, Renew Sust. Energ. Rev. 14 (2010) 217-232.

Google Scholar

[3] Y. Chisti, Biodiesel from microalgae, Biotechnol. Adv. 25 (2007) 294-306.

Google Scholar

[4] A.L. Ahmad, N.H. Yasin, C.J.C. Derek and J.K. Lim, Microalgae as a sustainable energy source for biodiesel production: a review, Renew Sust. Energ Rev. 15 (2011) 584-593.

DOI: 10.1016/j.rser.2010.09.018

Google Scholar

[5] P. Spolaore, C. Joannis-Cassan, E. Duran and A. Isambert, Commercial applications of microalgae, J. Biosci. Bioeng. 101 (2006) 87-96.

DOI: 10.1263/jbb.101.87

Google Scholar

[6] J. Sheehan, T. Dunahay, J. Benemann and P. Roessler, A look back at the U.S. Department of Energy's Aquatie Species Program- biodiesel from algae, National Renewable Energy Laboratory, Golden, Colorado. (1998).

DOI: 10.2172/15003040

Google Scholar

[7] Y. Liang, N. Sarkany, Y. Cui, Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions, Biotechnol. Lett. 31 (2009) 1043-1049.

DOI: 10.1007/s10529-009-9975-7

Google Scholar

[8] P. Abreu, B. Fernandes, A.A. Vicente, J. Teixeira and G. Dragone, Mixotrophic cultivation of Chlorella vulgaris using industrial dairy waste as organic carbon source, Bioresour. Technol. 118 (2012) 61-66.

DOI: 10.1016/j.biortech.2012.05.055

Google Scholar

[9] G. Zhao, J. Yu, F. Jiang, F. Zhang and T. Tan, The effect of different trophic modes on lipid accumulation of Scenedesmus quadricauda, Bioresour. Technol. 114 (2012) 466-471.

DOI: 10.1016/j.biortech.2012.02.129

Google Scholar

[10] A. Bhatnagar, S. Chinnasamy, M. Singh and K.C. Das, Renewable biomass production by mixotrophic algae in the presence of various carbon sources and wastewaters, Appl Energ. 88 (2011) 3425–3431.

DOI: 10.1016/j.apenergy.2010.12.064

Google Scholar

[11] B. Neenan, D. Feinberg, A. Hill, R. McIntosh and K. Terry, Fuels from microalgae: Technology status, potential, and research requirements, Solar Energy Research Inst Golden. CO (USA) (1986).

DOI: 10.2172/6685301

Google Scholar

[12] L. Rodolfi, G. Chini Zittelli, N. Bassi, G. Padovani, N. Biondi, G. Bonini and M.R. Tredici, Microalgae for oil: Strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor, Biotechnol. Bioeng. 102 (2009).

DOI: 10.1002/bit.22033

Google Scholar

[13] S. Mandal, N. Mallick, Microalga Scenedesmus obliquus as a potential source for biodiesel production, Appl. Microbiol. Biot. 84 (2009) 281-291.

DOI: 10.1007/s00253-009-1935-6

Google Scholar

[14] S. Ruangsomboon, Effect of light, nutrient, cultivation time and salinity on lipid production of newly isolated strain of the green microalga, Botryococcus braunii KMITL 2, Bioresour. Technol. 109 (2012) 261-265.

DOI: 10.1016/j.biortech.2011.07.025

Google Scholar

[15] Z.Y. Liu, G.C. Wang and B.C. Zhou, Effect of iron on growth and lipid accumulation in Chlorella vulgaris, Bioresour. Technol. 99 (2008) 4717-4722.

DOI: 10.1016/j.biortech.2007.09.073

Google Scholar

[16] I. Vaquero, M.C. Ruiz-Domínguez, M. Márquez and C. Vílchez, Cu-mediated biomass productivity enhancement and lutein enrichment of the novel microalga Coccomyxa onubensis, Process Biochem. 47 (2012) 694-700.

DOI: 10.1016/j.procbio.2012.01.016

Google Scholar

[17] A.M. Santos, M. Janssen, P.P. Lamers, W.A.C. Evers and R.H. Wijffels Growth of oil accumulating microalga Neochloris oleoabundans under alkaline–saline conditions Bioresour. Technol. 104 (2012) 593-599.

DOI: 10.1016/j.biortech.2011.10.084

Google Scholar

[18] M.K. Lam, K.T. Lee, Microalgae biofuels: A critical review of issues, problems and the way forward, Biotechnol. Adv. 30 (2012) 673-690.

DOI: 10.1016/j.biotechadv.2011.11.008

Google Scholar

[19] X. Yu, P. Zhao, C. He, J. Li, X. Tang, J. Zhou and Z. Huang, Isolation of a novel strain of Monoraphidium sp. and characterization of its potential application as biodiesel feedstock, Bioresour. Technol. 121 (2012) 256-262.

DOI: 10.1016/j.biortech.2012.07.002

Google Scholar

[20] E.G. Bligh, W.J. Dyer, A rapid method of total lipid extraction and purification, Can. J. Biochem. Physiol. 37 (1959) 911-917.

DOI: 10.1139/o59-099

Google Scholar

[21] G. Ulloa, A. Otero, M. Sánchez, J. Sineiro, M. Núñez and J. Fábregas, Effect of Mg, Si, and Sr on growth and antioxidant activity of the marine microalga Tetraselmis suecica, J. Appl. Phycol. 24 (2012) 1229-1236.

DOI: 10.1007/s10811-011-9764-2

Google Scholar

[22] E.B. Sydney, W. Sturm, J.C. de Carvalho, V. Thomaz-Soccol, C. Larroche, A. Pandey and C.R. Soccol, Potential carbon dioxide fixation by industrially important microalgae, Bioresour. Technol. 101 (2010) 5892-5896.

DOI: 10.1016/j.biortech.2010.02.088

Google Scholar

[23] E.W. Becker, Microalgae: Biotechnology and Microbiology, Cambridge University Press. London. (1994).

Google Scholar

[24] J.M. Lv, L.H. Cheng, X.H. Xu, L. Zhang and H.L. Chen, Enhanced lipid production of Chlorella vulgaris by adjustment of cultivation conditions, Bioresour. Technol. 101 (2010) 6797-6804.

DOI: 10.1016/j.biortech.2010.03.120

Google Scholar

[25] J. Liu, J. Huang, Z. Sun, Y. Zhong, Y. Jiang and F. Chen, Differential lipid and fatty acid profiles of photoautotrophic and heterotrophic Chlorella zofingiensis: Assessment of algal lipids for biodiesel production, Bioresour. Technol. 102 (2011).

DOI: 10.1016/j.biortech.2010.06.017

Google Scholar

[26] H.M. Guzmán, A.J. Valido, L.C. Duarte and K.F. Presmanes, Estimate by means of flow cytometry of variation in composition of fatty acids from Tetraselmis suecica in response to culture conditions, Aquacult Int. 18 (2010) 189-199.

DOI: 10.1007/s10499-008-9235-1

Google Scholar

[27] G. Knothe, Analyzing biodiesel: standards and other methods, J. Am. Oil Chem. Soc. 83 (2006) 823-833.

DOI: 10.1007/s11746-006-5033-y

Google Scholar

[28] M.J. Ramos, C.M. Fernández, A. Casas, L. Rodríguez and Á. Pérez, Influence of fatty acid composition of raw materials on biodiesel properties, Bioresour. Technol. 100 (2009) 261-268.

DOI: 10.1016/j.biortech.2008.06.039

Google Scholar