Review on Phase Change Material Slurries

Article Preview

Abstract:

Phase change materials (PCM) have recently received considerable attention in the field of thermal energy storage, due to their intrinsic properties. Phase change material slurry is a novel medium of heat storage and transfer, its apparent specific heat and heat transfer capacity is better than water.PCM slurries are being investigated for active thermal energy storage or as alternatives to conventional single phase fluids because they are pumpable and have advanced heat transport performance with phase change. This review mainly presents the information on PCM emulsions and microencapsulated PCM slurries (mPCM slurries).

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 860-863)

Pages:

946-951

Citation:

Online since:

December 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Inaba H. New challenge in advanced thermal energy transportation using functionally thermal fluids. Int J Therm Sci 2000; 39: 991-1003.

DOI: 10.1016/s1290-0729(00)01191-1

Google Scholar

[2] Schuchmann HP, Danner T. Emulgieren: Mehr als nur Zerkleinern. Chem-Ing-Tech 2004; 76: 364-75.

DOI: 10.1002/cite.200406163

Google Scholar

[3] Schalbart P, Kawaji M, Fumoto K. Formation of tetradecane nanoemulsion by low-energy emulsification methods. Int J Refrig 2010; 33: 1612-24.

DOI: 10.1016/j.ijrefrig.2010.09.002

Google Scholar

[4] Sarier N, Onder E. The manufacture of microencapsulated phase change materials suitable for the design of thermally enhanced fabrics. Thermochimica Acta 2007; 452: 149-60.

DOI: 10.1016/j.tca.2006.08.002

Google Scholar

[5] Thomas DG. Transport characteristics of suspension: VIII. A note on the viscosity of Newtonian suspensions of uniform spherical particles. Journal of Colloid Science 1965; 20: 267–77.

DOI: 10.1016/0095-8522(65)90016-4

Google Scholar

[6] Roy SK, Sengupta S. An evaluation of phase change microcapsules for use in enhanced heat transfer fluids. International Communications in Heat and Mass Transfer 1991; 18: 495-507.

DOI: 10.1016/0735-1933(91)90064-b

Google Scholar

[7] Datta P, Sengupta S, Roy SK. Natural convection heat transfer in an enclosure with suspensions of microencapsulated phase change materials. American Society of Mechanical Engineers, Heat Transfer Division 1992; 204: 133-44.

Google Scholar

[8] Lin KP, Zhang YP, Di HF, Yang R. Study of an electrical heating system with ductless air supply and shape-stabilized PCM for thermal storage. Energy.

DOI: 10.1016/j.enconman.2007.01.014

Google Scholar

[9] Lin KP, Zhang YP, Xu X, Di HF, Yang R, Qin PH. Modeling and simulation of under-floor electric heating system with shape-stabilized PCM plates. Build Environ 2004; 39(12): 1427-34.

DOI: 10.1016/j.buildenv.2004.04.005

Google Scholar

[10] Xu X, Zhang YP, Lin KP, Di HF, Yang R. Modeling and simulation on the thermal performance of shape-stabilized phase change material floor used in passive solar buildings. Energy Build 2005; 37: 1084–91.

DOI: 10.1016/j.enbuild.2004.12.016

Google Scholar

[11] Saman WY, Belusko M. Roof integrated unglazed transpired solar air heater. In: Lee T. editor. Proceedings of the 1997 Australian and New Zealand Solar Energy Society. Paper 66, Canberra, Australia; (1997).

Google Scholar

[12] Kondo T, Iwamoto T. Research on using the PCM for ceiling board. IEA ECESIA, Annex 17, 3rd workshop, Tokyo, Japan; (2002).

Google Scholar

[13] Vakilaltojjar SM, Saman W. Analysis and modeling of a phase change storage system for air conditioning applications. Appl Therm Eng 2001; 21: 249–63.

DOI: 10.1016/s1359-4311(00)00037-5

Google Scholar

[14] Saman W, Bruno F, Halawa E. Thermal performance of PCM thermal storage unit for a roof integrated solar heating system. Solar Energy 2005; 78: 341–9.

DOI: 10.1016/j.solener.2004.08.017

Google Scholar

[15] Charunyakorn P, Sengupta S, Roy SK. Forced convection heat transfer in microencapsulated phase change material slurries: flow in circular ducts. Int J Heat Mass Transfer 1991; 34(3): 819–33.

DOI: 10.1016/0017-9310(91)90128-2

Google Scholar

[16] Hu XX, Zhang YP. Novel insight and numerical analysis of convective heattransfer enhancement with microencapsulated phase change material slurries: laminar flow in a circular tube with constant heat flux. Int J Heat Mass Transfer 2002; 45: 3163–72.

DOI: 10.1016/s0017-9310(02)00034-0

Google Scholar

[17] Inaba H, Dai C, Horibe A. Natural convection heat transfer of microemulsion phase-change-material slurry in rectangular cavities heated from below and cooled from above. Int J Heat Mass Transfer 2003; 46: 4427-38.

DOI: 10.1016/s0017-9310(03)00289-8

Google Scholar

[18] Zeng RL, Wang X, Chen BJ, Zhang YP, Niu JL, Wang XC, et al. Heat transfer characteristics of microencapsulated phase change material slurry in laminar flow under constant heat flux. Appl Energy 2009; 86: 2661-70.

DOI: 10.1016/j.apenergy.2009.04.025

Google Scholar

[19] Zhang GH, Zhao CY. Thermal and rheological property characteristics of PCM microcapsule slurrie. In: 5th International renewable energy storage conference IRES 2010, Invited Keynote paper, Berlin, Germany; (2010).

Google Scholar

[20] Wang XC, Niu JL. Performance of cooled-ceiling operating with MPCM slurry. Energy Convers Manage 2009; 50: 583–91. Convers Manage 2007; 48: 2016-24.

DOI: 10.1016/j.enconman.2008.10.021

Google Scholar

[21] Mulligan JC, Colvin DP, Bryant YG. Microencapsulated phase-change material suspensions for heat transfer in spacecraft thermal systems. Journal of Spacecraft and Rockets 1996; 33: 278-84.

DOI: 10.2514/3.26753

Google Scholar

[22] Griffiths PW, Eames PC. Performance of chilled ceiling panels using phase change material slurries as the heat transport medium. Applied Thermal Engineering 2007; 27: 1756-60.

DOI: 10.1016/j.applthermaleng.2006.07.009

Google Scholar

[23] Wang X, Niu J, van Paassen AHC. Raising evaporative cooling potentials using combined cooled ceiling and MPCM slurry storage. Energy and Buildings 2008; 40: 1691-8.

DOI: 10.1016/j.enbuild.2008.02.028

Google Scholar

[24] Wang X, Niu J. Performance of cooled-ceiling operating with MPCM slurry. Energy Conversion and Management 2009; 50: 583-91.

DOI: 10.1016/j.enconman.2008.10.021

Google Scholar

[25] Diaconu BM, Varga S, Oliveira AC. Experimental assessment of heat storage properties and heat transfer characteristics of a phase change material slurry for air conditioning applications. Applied Energy 2010; 87: 620-8.

DOI: 10.1016/j.apenergy.2009.05.002

Google Scholar

[26] Choi M, Cho K. Liquid cooling for a multichip module using Fluorinert liquid and paraffin slurry. International Journal of Heat and Mass Transfer 2000; 43: 209-18.

DOI: 10.1016/s0017-9310(99)00137-4

Google Scholar

[27] Hao YL, Tao YX. A numerical model for phase-change suspension flow in microchannels. Numerical Heat Transfer, Part A: Applications: An International Journal of Computation and Methodology 2004; 46: 55-77.

DOI: 10.1080/10407780490457545

Google Scholar

[28] Rao Y, Dammel F, Stephan P, Lin G. Convective heat transfer characteristics of microencapsulated phase change material suspensions in minichannels. Heat and Mass Transfer 2007; 44: 175-86.

DOI: 10.1007/s00231-007-0232-0

Google Scholar