[1]
L.J. Sherwood, R.G. Qualls. Stability of phosphorus within a wetland soil following ferric chloride treatment to control eutrophication. Environ. Sci. Technol. Vol. 35 (2001), p.4126–4131.
DOI: 10.1021/es0106366
Google Scholar
[2]
V.H. Smith, G.D. Tilman, J.C. Nekola. Eutrophication: impacts of excess nutrient inputs on freshwater, marine, and terrestrial ecosystem. Environ. Pollut. Vol. 100(1999), p.179–196.
DOI: 10.1016/s0269-7491(99)00091-3
Google Scholar
[3]
J.L. Garland, L.H. Levine, N.C. Yorio. Hummerick, M.E.,. Response of graywater recycling systems based on hydroponic plant growth to three classes of surfactants. Water Res. Vol. 38 (2004), p.1952–(1962).
DOI: 10.1016/j.watres.2004.01.005
Google Scholar
[4]
R.A. Smith, G.E. Schwartz, R.B. Alexander, Regional interpretation of water quality monitoring data, Water Resour. Res. Vol. 33 (1997), p.2781–2798.
DOI: 10.1029/97wr02171
Google Scholar
[5]
C. Forni, J. Chen, L. Tancioni1, M.G. Caiola. Evaluation of the fern Azolla for growth, nitrogen and phosphorus removal from wastewater. Water Res. Vol. 35 (2001), p.1592–1598.
DOI: 10.1016/s0043-1354(00)00396-1
Google Scholar
[6]
P.S. Hooda, A.C. Edwards, H.A. Anderson, A. Miller. A review of water quality concerns in livestock farming areas. Sci. Total Environ. Vol. 250(2000), p.143–167.
DOI: 10.1016/s0048-9697(00)00373-9
Google Scholar
[7]
A.A. Rababah, N.J. Ashbolt. Innovative production treatment hydroponic farm for primary municipal sewage utilization. Water Res. Vol. 34(2000), p.825–834.
DOI: 10.1016/s0043-1354(99)00231-6
Google Scholar
[8]
P.R. Adler, S.T. Summerfelt, D.M. Glenn, F. Takeda. Mechanistic approach to phytoremediation of water. Ecol. Eng. Vol. 20(2003), p.251–264.
DOI: 10.1016/s0925-8574(03)00044-2
Google Scholar
[9]
M.P. Elless, C.Y. Poynton, C.A. Willms, M.P. Doyle, A.C. Lopez, D.A. Sokkary, B.W. Ferguson. Pilot-scale demonstration of phytofiltration for treatment of arsenic in New Mexico drinking water. Water Res. Vol. 39(2005), p.3863–3872.
DOI: 10.1016/j.watres.2005.07.029
Google Scholar
[10]
K.H. Rogers, P.F. Breen, A.J. Chick. Nitrogen removal in experimental wetland treatment systems: evidence for the role of aquatic plants. Res. J. Water Poll. Control Fed. Vol. 63(1991), p.934–941.
Google Scholar
[11]
C.C. Tanner. Plants for constructed wetland treatment systems–a comparison of the growth and nutrient uptake of eight emergent species. Ecol. Eng. Vol. 7(1996), p.59–83.
DOI: 10.1016/0925-8574(95)00066-6
Google Scholar
[12]
APHA, Standard Methods for the Examination of Water and Wastewater, 20th ed. American Public Health Association, Washington, DC. (1998).
Google Scholar
[13]
D.O. Huett, S.G. Morris, G. Smith and N. Hunt, Nitrogen and phosphorus removal from plant nursery runoff in vegetated and unvegetated subsurface flow wetlands, Water Res. Vol. 39 (2005), p.3259–3272.
DOI: 10.1016/j.watres.2005.05.038
Google Scholar
[14]
R.P. Gambrell, W.H. Jr. Patrick. Chemical and microbiological properties of anaerobic soils and sediments. In: Hook, D.D., Crawford, R.M. (Eds. ), Plant Life in Anaerobic AnnArbor Science Publishers, AnnArbor, 1978. p.375–423.
Google Scholar