Cobalt Ion Removal from Aqueous Solutions by Coal Fly Ash

Article Preview

Abstract:

Cobalt ions, which are commonly found in low concentrations in industrial wastewater, are toxic, biocumulative, and hard to degrade. Therefore, the removal of these heavy metal ions from wastewater is highly important. The removal of Co (II) from aqueous solutions using untreated and alkali-modified coal fly ash was studied. The results for untreated fly ash show that the pseudo-second-order kinetic equation better fits the observed adsorption progress. The Langmuir and Freundlich isotherms could describe the reaction efficiently, and the maximum adsorption capacity for Co (II) was 237 mg·g-1 at 20°C. Pretreating the fly ash with an alkali solution decreases the adsorption capability, possibly by destroying the zeolite structure. When the ratio of the fly ash dose and Co (II) concentration is between 40 and 60, the removal rate of Co (II) at a concentration of 20 mg·L-1 reaches 99.95%.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 864-867)

Pages:

1732-1740

Citation:

Online since:

December 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S.E. Bailey, T.J. Olin, R.M. Brica and D.D. Adrian: Water Res., 1999, 33(11): 2469-2479.

Google Scholar

[2] Y. Al-Degs, M.A.M. Khraisheh and M.F. Tutunji: Water Res., 2001, 35(15): 3724-3728.

Google Scholar

[3] S. Mauchauffée E, Meux: Chemosphere , 2007, 69(5): 763–768.

Google Scholar

[4] A.G. El Samrani, B.S. Lartiges,F. Villiéras: Water Res, 2008, 42(4-5): 951–960.

DOI: 10.1016/j.watres.2007.09.009

Google Scholar

[5] V.K. Verma, S. Tewari, J.P.N. Rai: Bioresour Technol, 2008, 99(6): 1932–(1938).

Google Scholar

[6] M. Mohsen-Nia, P. Montazeri, H. Modarress: Desalination, 2006, 1(43): 276–281.

Google Scholar

[7] Saber E, Mansour, Ibrahim H, Hasieb and Hussein A, Khalaf: Journal of Applied Sciences, 2012, 12(8): 787-792.

Google Scholar

[8] S. Rengaraj, Seung-Hyeon Moon: Water Research, 2002, 36(7): 1783-1793.

Google Scholar

[9] S. Dahiya, R.M. Tripathi, A.G. Hegde: J. Hazard. Mater, 2008, 150(2): 376-386.

Google Scholar

H. Parab, S. Joshi, N. Shenoy, A. Lali, U.S. Sarma, M. Sudersanan: Process Biochem, 2006, 41(3): 609–615.

DOI: 10.1016/j.procbio.2005.08.006

Google Scholar

[1] A. Ahmadpour, M. Tahmasbi,T. Rohani Bastami, J. Amel Besharati: J. Hazard. Mater, 2009, 166(2-3): 925-930.

Google Scholar

[2] K.A. Krishnan, T.S. Anirudhan: Chem. Eng. J, 2008, 137(2): 257–264.

Google Scholar

[3] Taylor H.F.W. The chemistry of cements, vols ⅠandⅡ. London and New York: Academic Press, (1964).

Google Scholar

[4] Beeghly J.H. Roller compacted base course construction using lime stabilized fly ash and flue gas desulfurization sludge by-product. Proceedings, American Chemical Society, Division of Fuel Chemistry, Vol, 41, New Orleans, (1996).

DOI: 10.1016/s0140-6701(97)83407-8

Google Scholar

[15] M. Ahmaruzzaman: Progress in Energy and Combustion Science, 2010, 36(3): 327-363.

Google Scholar

[6] Sen AK, De AK: Water Research, 1987, 21(8): 885-888.

Google Scholar

[7] T. Mathialagan, T. Viraraghavan: Journal of hazardous materials, 2002, 94(3): 291-303.

Google Scholar

[8] M. Otero, F. Rozada, L.F. Calvo, et. al: Biochemical Engineering Journal, 2003, 15(1): 59-68.

Google Scholar

[19] Sevgi Kocaoba: Desalination, 2007, 214(1-3): 1-10.

Google Scholar

[20] McKay G, Blair HS, Garden JR: Journal of Applied Polymer Science, 1982, 27(8): 3042-3057.

Google Scholar

[21] Fanor Mondragon; Fabio Rincon; Ligia Sierra. Fuel, 1990, 69(2): 263-266.

Google Scholar

[22] Weiping Ma, Paul W. Brown, Sridhar Komarneni: Journal of Materials research. 1998, 11(1): 3-7.

Google Scholar