Genome Wide Analysis of PHD Finger Family in Soybean (Glycine max)

Article Preview

Abstract:

The PHD finger is a highly conserved structural domain in roles with regulating transcription and modification of chromatin structure. Forty-five PHD finger genes encoding PHD finger protein were identified from soybean (Glycine max) database. And sixty - four unique typical PHD finger domains were retrieved. NJ phylogenetic tree of all 64 PHD finger domains consisted of ten main clades (A-J). Subcellular localization analysis shows that Glyma06g33590.1, Glyma10g05080.1 and Glyma11g11720.1 may localize in Golgi body, chloroplast thylakoid membrane and mitochondrial inner membrane, respectively. The function of domain is loyal to the cause of protein situated in particular site of cell. Eight unique domains have been found concomitant with PHD domain in a certain protein. The cooperative relationship between diverse domains may important for particular biological event.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 864-867)

Pages:

2503-2508

Citation:

Online since:

December 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. Aasland, T.J. Gibson, A.F. Stewart, The PHD finger: implications for chromatinmediated transcriptional regulation, Trends Biochemical Sciences. 20 (1995) 56-59.

DOI: 10.1016/s0968-0004(00)88957-4

Google Scholar

[2] G. Farkas, J. Gausz, M. Galloni, G. Reuter, H. Gyurkovics, F. Karch, The Trithorax-like gene encodes the Drosophila GAGA factor, Nature. 371 (1994) 806-808.

DOI: 10.1038/371806a0

Google Scholar

[3] A. Lonie, R. D'Andrea, R. Paro, R. Saint, Molecular characterisation of the Polycomblike gene of Drosophila melanogaster, a trans-acting negative regulator of homeotic gene expression, Development. 120 (1994) 2629-2636.

DOI: 10.1242/dev.120.9.2629

Google Scholar

[4] R.J. Gibbons, S. Bachoo, D.J. Picketts, S. Aftimos, B. Asenbauer, J. Bergoffen, S.A. Berry, N. Dahl, A. Fryer, K. Keppler, K. Kurosawa, M.L. Levin, M. Masuno, G. Neri, M.E. Pierpont, S.F. Slaney, D.R. Hiqqs, Mutations in transcriptional regulator ATRX establish the functional significance of a PHD-like domain, Nature Genetic, 17 (1997).

DOI: 10.1038/ng1097-146

Google Scholar

[5] S. Jacobson, L. Pillus, Modifying chromatin and concepts of cancer, Current Opinion in Genetics and Development. 9 (1999) 175-184.

DOI: 10.1016/s0959-437x(99)80027-6

Google Scholar

[6] U. Aapola, K. Shibuya, H.S. Scott, J. Ollila, M. Vihinen, M. Heino, A. Shintani, K. Kawasaki, S. Minoshima, K. Krohn, S.E. Antonarakis, N. Shimizu, J. Kuddoh, P. Peterson, Isolation and initial characterizaion of a novel zinc finger gene, DNMTL3L, on 21q22. 3, related to the cytosine-5-methyltransferase 3 gene family, Genomics. 65 (2000).

DOI: 10.1006/geno.2000.6168

Google Scholar

[7] L.C. Wu, Z.W. Wang, J.T. Tsan, M.A. Apillman, A. Phung, X.L. Xu, M.W. Yang, L.Y. Hwang, A.M. Bowcock, R. Baer, Identification of a RING protein that can interact in vivo with the BRCA1 gene product, Nature Genetic. 14 (1996) 430-440.

DOI: 10.1038/ng1296-430

Google Scholar

[8] T.A. Hall, BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT, Nucleic Acids Symposium Series. 41 (1999) 95-98.

Google Scholar

[9] J.D. Thompson, T.J. Gibson, F. Plewniak, F. Jeanmougin, D.G. Higgins, The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools, Nucleic Acids Research. 25 (1997) 4876-4882.

DOI: 10.1093/nar/25.24.4876

Google Scholar

[10] T.L. Bailey, M. Gribskov, Combining evidence using p-values: application to sequence homology searches, Bioinformatics. 14 (1998) 48-54.

DOI: 10.1093/bioinformatics/14.1.48

Google Scholar

[11] U. Schindler, H. Beckmann, A.R. Cashmore, HAT3. 1, a novel Arabidopsis homeodomain protein containing a conserved cysteine-rich region, Plant Journal. 4 (1993) 137-150.

DOI: 10.1046/j.1365-313x.1993.04010137.x

Google Scholar

[12] M.R. Kaadige, D.E. Ayer, The polybasic region that follows the plant homeodomain zinc finger1 of Pf1 is necessary and sufficient for specific phosphoinositide binding, Biological Chemistry. 281 (2006) 28831-28836.

DOI: 10.1074/jbc.m605624200

Google Scholar

[13] M. Bienz, The PHD f inger, a nuclear protein-interaction domain, Trends Biochemical Sciences. 31 (2006) 35-40.

DOI: 10.1016/j.tibs.2005.11.001

Google Scholar

[14] J. Schmutz, S.B. Cannon, J. Schlueter, J.X. Ma, et al., Genome sequence of the palaeopolyploid soybean, Nature. 463 (2010) 178-183.

Google Scholar

[15] G.S. Yochum, D.E. Ayer, Pf1, a novel PHD zinc finger protein that links the TLE corepressor to the mSin3A-histone deacetylase complex, Molecular and Cellular Biology. 21 (2001) 4110-4118.

DOI: 10.1128/mcb.21.13.4110-4118.2001

Google Scholar

[16] D.C. Schultz, J.R. Friedman, F.J. Rauscher, Targeting histone deacetylase complexes via KRAB-zinc finger proteins: the PHD and bromodomains of KAP-1 form a cooperative unit that recruits a novel isoform of the Mi-2alpha subunit of NuRD, Genes and Developmen. 15 (2001).

DOI: 10.1101/gad.869501

Google Scholar

[17] M. Anderson, K. Fair, S. Amero, S. Nelson, P.J. Harte, M.O. Diaz, A new family of cyclophilins with an RNA recognition motif that interact with members of the trx/MLL protein family in Drosophila and human cells, Development Genes and Evolution. 212 (2002).

DOI: 10.1007/s00427-002-0213-8

Google Scholar