[1]
Z. X. Zhu, Soil science (In Chinese). Beijing: Agriculture Press, (1983).
Google Scholar
[2]
S.W. Duiker, D. C Flanagan, L. R. La, Readability and infiltration characteristics of five major soils of southwest Spain, Catena. 45(2001) 103-121.
DOI: 10.1016/s0341-8162(01)00145-x
Google Scholar
[3]
F. J. Stevenson, Humus chemistry, John Willey and Sons, New York, 1982, 374-402.
Google Scholar
[4]
R. E. Yoder, A direct method of aggregate analysis of soils and a study of the physical nature of erosion losses, Journal of the American Society o f Agronomy. 28(1936) 337-351.
DOI: 10.2134/agronj1936.00021962002800050001x
Google Scholar
[5]
D. M. Fox and Y. Le, Process-based analysis of aggregate stability effects on sealing, infiltration and interrill erosion, Soil Science Society of America Journal. 62(1998) 717-724.
DOI: 10.2136/sssaj1998.03615995006200030025x
Google Scholar
[6]
R. B. Bryan, Soil erodibility and process of water erosion on hill slopes, Geomorphology. 3(2000) 385-415.
Google Scholar
[7]
W. M. White, Dry Aggregate Distribution. In: Carter MR ed. Soil Sampling and Methods of Analysis. Canadian Society of Soil Science. Boca Raton, FL: Lewis Publishers, Division of CRC Press. 1993, 659-662.
Google Scholar
[8]
D. A. Angers ,G. R. Mehuys, Aggregate Stability to Water. In: Carter MR ed. Soil Sampling and Methods of Analysis. Canadian Society of Soil Science. Boca Raton, FL: Lewis Publishers, Division of CRC Press. 1993, 653-655.
DOI: 10.1201/9781420005271.ch62
Google Scholar
[9]
D. L. Turcotte, Fractal fragmentation, Geography Research. 91 (1986) 1921-(1926).
Google Scholar
[10]
A. J. Katz , A. H. Thompson, Fractal sandstone pores: Implication for conductivity and pore formation, Physical Review Letters. 54 (1985) 1325-1328.
DOI: 10.1103/physrevlett.54.1325
Google Scholar
[11]
S. W. Tyler, S. W. Wheatcraft, WApplication of fractal mathematics to soil water retention estimation, Soil Sci. Soc. Am. J. 53(1989) 987-996.
DOI: 10.2136/sssaj1989.03615995005300040001x
Google Scholar
[12]
S. P. Neuman, Universal scaling of hydraulic conductivities and dispersivities in geologic media, Water Resour. Res. 26(1990) 1749-1758.
DOI: 10.1029/wr026i008p01749
Google Scholar
[13]
I. M. Young, J. W. Crawford, C. Rappoldt, New mthods and models for characterizing structural heterogeneity of soil, Soil & Tillage Research. 61(2001) 33-45.
DOI: 10.1016/s0167-1987(01)00188-x
Google Scholar
[14]
C. H. M. Van Bavel, Mean weight-diameter of soil aggregates as a statistical index of aggregation, Soil Science Society of America Journal . 14(1949) 20-23.
DOI: 10.2136/sssaj1950.036159950014000c0005x
Google Scholar
[15]
E. T. Elliott, Aggregate structure and carbon, nitrogen, and phosphorus in native and cultivated soils, Soil Sci. Soc. Am. J. 50(1986) 627–633.
DOI: 10.2136/sssaj1986.03615995005000030017x
Google Scholar
[16]
J. Six , H. Bossuyt, A history of research on the link between miero-aggregates,soil1biota,and soil organic matter dynamics. soil&TillageReseareh. 79(2004) 7-31.
DOI: 10.1016/j.still.2004.03.008
Google Scholar
[17]
J. R. Nimmo, K. S. Perkins, Methods of soil analysis, part 4 – physical methods, Soil Science Society of America. 2002, 317-328.
Google Scholar
[18]
Z. Alagoz , E. Yilmaz, Effects of different sources of organic matter on soil aggregate form at ion and stability: A laboratory study on a Lithic Rhodoxeralf from Turkey, Soil and Tillage Research. 103(2009) 419-429.
DOI: 10.1016/j.still.2008.12.006
Google Scholar