Characterization of Chlorimuron-Ethyl Herbicide Degrading Bacteria Isolated from Paddy Soil

Article Preview

Abstract:

A bacterial strain S5-1 capable of degrading chlorimuron-ethyl was isolated from paddy soil using enrichment technique. On the basis of traditional culture characteristics, colony and cell morphology, physiological and biochemical characteristics, type of internal photosynthetic membrane and combined with 16S rRNA gene sequence analysis, the strain was identified as a Rhodopseudomonas sp.. The optimal temperature and pH for biodegradation of chlorimuron-ethyl by Rhodopseudomonas sp. strain S5-1 were 35°Cand pH 7.0, and the degradation rate reached 87.8% within 10 days under the optimal conditions. The results revealed that strain S5-1 could degrade chlorimuron-ethyl efficiently and for further study it could potentially be used as a biological agent for the remediation of soil, water or crops, contaminated by chlorimuron-ethyl herbicide.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 864-867)

Pages:

347-352

Citation:

Online since:

December 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] P. S. Ziveh1, V. Mahdavi: J. Plant Protection Research Vol. 54(2012), p.435.

Google Scholar

[2] T. Singh, B. Lal, and B. S. Satapathy: Popular Kheti Vol. 1(2013), p.10.

Google Scholar

[3] S. Singh, G. Singh, V. P. Singh and A. P. Singh: Indian J. Weed Sci. Vol. 37(2005), p.51.

Google Scholar

[4] A.K. Ghorai, R. De, H. Chowdhury, B. Majumdar, A. Chakraborty and M. Kumar: Indian J. Weed Sci. Vol. 37(2013), p.47.

Google Scholar

[5] S. Jawahar, A.V. L. Deepika,C. Kalaiyarasan AND K. Suseendran: Life Sciences Leaflets Vol. 3 (2013), p.79.

Google Scholar

[6] X. Lin, Y. Wang, H. Wang, T. Chirko, H. Ding and Y. Zhao: Pedosphere Vol. 20(2010), p.111.

Google Scholar

[7] X. Zhang, H. Zhang, X. Li, Z. Su, J. Wang and C. Zhang: J. Environ. Sci. Vol. 21(2009), p.1253.

Google Scholar

[8] G. Boschin, A. D'Agostina, C. Antonioni, D. Locati and A. Arnoldi: Chemosphere Vol. 68(2007), p.1312.

DOI: 10.1016/j.chemosphere.2007.01.036

Google Scholar

[9] Y. H. Wang, L. W. Du and L. Y. Bai: J. Braz. Chem. Soc. Vol. 24(2013), p.26.

Google Scholar

[10] Y. L. Zou , L. X. Zhao , C. H. Teng , H. L. Ren and B. Tao: Philippine J. Crop Sci. Vol. 38(2013), p.52.

Google Scholar

[11] Z. Y. Ruan, S. Zhou, S. H. Jiang, L. Sun, Y. Zhai, Y. W. Wang, C. Chen and B. Zhao: Bioresour. Technol. Vol. 147(2013), p.477.

Google Scholar

[12] J. G. Holt, N. R. Krieg, P. H. Sneath, J. T. Staley and S. T. Williams in: Bergey's Manual of Determinative Bacteriology, 9th edn. edited by R. H. Williams Baltimore Maryland (1994).

Google Scholar

[13] X. Dong and M.Y. Cai in: Manual of identification for general bacteriology, China Publishing Company of Science, Beijing (2001) (In Chinese).

Google Scholar

[14] D. Xing, Y. Zuo, S. Cheng, J. Regan and B. Logan: Environ. Sci. Technol. Vol. 42 (2008), p.4146.

Google Scholar

[15] D.C. Haws, T.L. Hodge, and R. Yoshida: Bullet. Mathema. Biolo. Vol. 73(2011), p.2627.

Google Scholar

[16] J. P. Ma, Z. Wang, P. Lu, H. J. Wang, S. W. Ali, S. P. Li and X. Huang: FEMS. Vol. 296(2009), p.203.

Google Scholar

[17] Y. Tao, Y. He, Y. Wu, F. Liu, X. Li, W. Zong, and Z. Zhou: Intern. J. Hydrog. Energy Vol. 33(2008), p.963.

Google Scholar

[18] L. B. Yin, X. H. Li, Y. Liu, D. Y. Zhang, S. B. Zhang and X. W. Luo: FBE Vol. 21(2012), p.397.

Google Scholar

[19] G. E. Howe, L. L. Marking, T. D. Bills, J. J. Rach, and F. L. Mayer: Environ Toxicol. Chem. Vol. 13(2009), p.51.

Google Scholar

[20] S. Rowland, D. Jones, A. Scarlett, C. West, L. P. Hin, M. Boberek, A. Tonkin, B. Smith, and C. Whitby: Sci. Total Environ. Vol. 409(2011), p.2936.

DOI: 10.1016/j.scitotenv.2011.04.012

Google Scholar