Synergistic Effect of Aldicarb on the Toxicity of Ionic Liquid Mixtures to Vibrio qinghaiensis sp.-Q67

Article Preview

Abstract:

Various chemicals emerge in environment and exist as mixtures with different forms and concentrations. Toxicity interaction by mixtures may pose potential hazards and risks to the environmental safety and human health. Recent data show that toxicity interaction within ionic liquid (IL) mixtures related with some certain component. However, how to determine the specific component in a mixture is not an easy work and needs more researches about it. Therefore, we investigated the toxicity of twelve groups of mixtures by using three ILs and one pesticide aldicarb as mixture components. Four binary and eight pseduo-binary mixtures were designed by equivalent effect concentration ratio ray method using EC5 and EC50 of individual component. The toxicities of single chemicals and these mixtures to a freshwater photobacterium Vibrio qinghaiensis sp.-Q67 were determined by using the microplate toxicity analysis method. Toxicity interaction within mixtures were determined based on an additive referrence model, concentration addition (CA). The results showed that three binary IL mixture exhibited additive action and one antagonism. Interstingly, most pusedo-mixtures of aldicab and binary IL mixture exhibited cleary synergism especialy when they were mixed in the ratio of components EC5.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 864-867)

Pages:

413-417

Citation:

Online since:

December 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Matzke, S. Stolte, A. Böschen and J. Filser: Green Chem. Vol. 10 (2008), p.784.

Google Scholar

[2] R. Altenburger, M. Nendza and G. Schüürmann: Environ. Toxicol. Chem. Vol. 22 (2003), p. (1900).

Google Scholar

[3] M. J. Jonker, C. Svendsen, J. J. M. Bedaux, M. Bongers and J. E. Kammenga: Environ. Toxicol. Chem., Vol. 24 (2005), p.2701.

Google Scholar

[4] R. L. Yang, N. Li and M. H. Zong: J. Mol. Catal. B-Enzym., Vol. 74 (2012), p.24.

Google Scholar

[5] Y. T. Xia, X. R. Zhi, X. H. Wang, M. Chen and J. Cheng: Anal. Bioanal. Chem. Vol. 402 (2012), p.1241.

Google Scholar

[6] J. F. Fernandez, J. Neumann and J. Thoming: Curr. Org. Chem. Vol. 15 (2011), p. (1992).

Google Scholar

[7] S. P. M. Ventura, C. S. Marques, A. A. Rosatella, C. A. M. Afonso, F. Gonçalves and J. A. P. Coutinho: Ecotox. Environ. Safe. Vol. 76 (2012), p.162.

Google Scholar

[8] S. Viboud, N. Papaiconomou, A. Cortesi, G. Chatel, M. Draye and D. Fontvieille: J. Hazard. Mater. Vol. 215(2012), p.40.

DOI: 10.1016/j.jhazmat.2012.02.019

Google Scholar

[9] J. Zhang, S. S. Liu and H. L. Liu: J. Hazard. Mater. Vol. 170 (2009), p.920.

Google Scholar

[10] J. Zhang, S. S. Liu, H. L. Liu, X. W. Zhu and X. J. Mi: Environ. Pollut. Vol. 159 (2011), p.1941.

Google Scholar

[11] X. W. Zhu, S. S. Liu, H. L. Ge and Y. Liu: Water Res. Vol. 43 (2009), p.1731.

Google Scholar

[12] S.S. Liu, J. Zhang, Z. Yahui and L. Qin: Acta Chim. Sinica Vol. 70 (2012), p.1511 (in Chinese).

Google Scholar

[13] J. Zhang, S. S. Liu, R. N. Dou, H. L. Liu and J. Zhang: Chemosphere Vol. 82 (2011), p.1024.

Google Scholar

[14] S.S. Liu, L. Liu and F. Chen: Acta Chim. Sinica, Vol. 71 (2013), DOI: 10. 6023/A13040355 (in Chinese).

Google Scholar