[1]
National Bureau of Statistics. National economy and society developed statistical bulletin[M]. Beijing: China Statistics Press, (2012).
Google Scholar
[2]
Yuanshun Du. Regression analysis method for gas daily load [J]. Gas and Heat, 1982, 2(4): 26-30.
Google Scholar
[3]
Shilian Chen, Guiying Gao. Analysis and Forcast for Production and Main Consume Quantity of Energy[J]. SYSTEMS ENGINEERING-THEORY and PRACTICE, 1994, 14(9): 69-73.
Google Scholar
[4]
Contreras J, Espinola R, Nogales F J, et al. ARIMA models to predict next-day electricity prices[J]. Power Systems, IEEE Transactions on, 2003, 18(3): 1014-1020.
DOI: 10.1109/tpwrs.2002.804943
Google Scholar
[5]
Zhao Yang, Yan Liu. Application of Neural network in Natural Gas Load Forecasting[J]. Gas and Heat, 2003(6): 331-332.
Google Scholar
[6]
Mackay RM, Probert SD. Modified logit-function demand model for predicting natural crude-oil and natural-gas consumptions[J]. Applied Energy, 1994, (49): 75-90.
DOI: 10.1016/0306-2619(94)90058-2
Google Scholar
[7]
Bates J M, Granger C W J. The combination of forecasts[J]. Operations Research Quarterly, 1969, 20(4): 451-468.
Google Scholar
[8]
Han Liu, Ding Liu, Gang Zheng et al. Natural gas load forecasting based on least squares support vector machine[J]. Journal of Chemical Industry and Engineering, 2004, 55(5): 828-832.
DOI: 10.1109/icmlc.2004.1378571
Google Scholar
[9]
Henrique S H et al. Nerual Networks for Short-Term Load Forecasting: A Review and Evaluation. IEEE Transactions on Power Systems, 2001, 16(1): 802-805.
Google Scholar
[10]
Box G, Jenkins G, Reinsel C. Tmie series analysis: forecasting and controlling[M]. Englewood Cliffs, N J, USA: Prentice-Hall, (1994).
Google Scholar