Electron Beam Sintering of Zirconia Ceramics

Article Preview

Abstract:

The work demonstrated the sintering of zirconium dioxide ceramics by means of an electron beam produced by a plasma-cathode e-beam source operating at fore-vacuum pressure. The sintered ceramics consist of tetragonal-modified zirconium dioxide with grain size from 0.7 to 10 micrometers, depending on the sintering conditions. At constant sintering temperature, the density of the material and its grain size depend on the integrated energy injected into the sintered material by the electron beam.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

150-156

Citation:

Online since:

December 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. F. Zäh, S. Lutzmann, M. Kahnert, and F. Walchshäusl, Determination of Process Parameters for Electron Beam Sintering (EBS), Proc. COMSOL Conference 2008. Hannover.

Google Scholar

[2] Makoto, Takeshi, Ken-ichi, European Patent 1288331 A1.

Google Scholar

[3] Yu. M. Annenkov, Physical foundations for high-temperature electron-beam modification of ceramics, Russian Physics Journal, 39 (1996) 1146-1159.

DOI: 10.1007/bf02436157

Google Scholar

[4] V.A. Burdovitsin and E.M. Oks, Fore-vacuum plasma-cathode electron sources, Laser and particle beams, 26 (2008) 619–635.

DOI: 10.1017/s0263034608000694

Google Scholar

[5] V.A. Burdovitsin, A.S. Klimov, E.M. Oks, On the Possibility of Electron-Beam Processing of Dielectrics Using a Forevacuum Plasma Electron Source, Technical Phys. Letters, 35 (2009) 511-513.

DOI: 10.1134/s1063785009060091

Google Scholar

[6] V.A. Burdovitsin, A.S. Klimov, A.V. Medovnik, and E.M. Oks, Electron beam treatment of non-conducting materials by a fore-pump-pressure plasma-cathode electron beam source, Plasma Sources Sci. Technol., 19 (2010) 20–26.

DOI: 10.1088/0963-0252/19/5/055003

Google Scholar

[7] O.L. Khasanov, E.S. Dvilis, Yu.P. Pokholkov, V.M. Sokolov, Mechanisms of Ultrasonic Pressing of Ceramic Nanopowders, Journal of Advanced Materials, 5 (2001) 69-75.

Google Scholar

[8] V.A. Burdovitsin, E.S. Dvilis, A.V. Medovnik, E.M. Oks, O.L. Khasanov, Yu.G. Yushkov, Surface structure of alumina ceramics during irradiation by a pulsed electron beam, Technical Physics, 58 (2013) 111-113.

DOI: 10.1134/s1063784213010039

Google Scholar

[9] O. Khasanov, U. Reichel, E. Dvilis, and A. Khasanov, Lower sintering temperature of nanostructured dense ceramics compacted from dry nanopowders using powerful ultrasonic action, IOP Conference Series: Materials Science and Engineering 18 (2011).

DOI: 10.1088/1757-899x/18/8/082004

Google Scholar

[10] G. Ya. Akimov, A.A. Novokhatskaya, S. Yu. Prylypko, and Yu. F. Revenko, Effect of the Sintering Temperature of Ceramic Manganites La0. 7Mn1. 3O3 on Their Grain Sizes, Magnetic and Electrical Properties, Physics of Solid State, 54 (2012) (2001).

DOI: 10.1134/s1063783412100022

Google Scholar

[11] Information on http: /smartimtech. com/modeling/evolution. htm.

Google Scholar