Mechanical and Tribotechnical Characteristics of Nanocomposites Based on Mixture of Ultrahigh Molecular Weight Polyethylene and Polypropylene

Article Preview

Abstract:

The aim of the study is to design wear-resistant and extrudable polymeric composites based on mixture of UHMWPE+PP with increased tribotechnical characteristics for the wide application in friction units of machine parts and mechanisms as well as using the polymeric resin developed for obtaining nanocomposites. Adding of block copolymer PP-b LLDPE to UHMWPE is motivated by the necessity to increase the adhesion between the incompatible polymeric components of the mixture. It is shown that wear intensity of the polymer-polymeric composites UHMWPE+n wt.% PP-b-LLDPE is reduced at filling UHMWPE by the block copolymer. In doing so, an important technological characteristic of UHMWPE specific extrusion pressure (proportional to the melt flow index) is improved (is lowered). Nanocomposites on the basis of the given matrix have shown wear resistance of 3-4 times higher in contrast with pure UHMWPE. Permolecular structure and wear track surfaces of nanocomposites on the basis of polymer-polymeric matrix (UHMWPE+10 wt.% PP-b-LLDPE) were investigated. The mechanism of the wear of nanocomposites is discussed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

36-44

Citation:

Online since:

December 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B.J. Briscoe, S.K. Sinha, Wear of polymers. Proc. Inst. Mech. Eng. J. Eng. Tribol., 216 (2002), 401–413.

Google Scholar

[2] Brian J. Briscoe and Sujeet K. Sinha, Tribological applications of polymers and their composites: Past, present and future prospects, in Tribology of polymeric nanocomposites by K. Friedrich and Alois K. Schlarb (ed. B.J. Briscoe), Elsevier, 2008, p.1.

DOI: 10.1016/b978-0-444-59455-6.00001-5

Google Scholar

[3] Galetz M.C., Blar T., Ruckdaschel H ., Sandler K.W., Alstadt V. Carbon Nanofibre-Reinforced Ultrahigh Molecular Weiht Polyethylene for Tribological Applications, Journal of Applied Polymer Science. 104 (2007), 4173-4181.

DOI: 10.1002/app.26058

Google Scholar

[4] Z. Wei, Ya-Pu Zhao, S.L. Ruan, P. Gao. A study of the tribological behavior of carbon-nanotube-reinforeed ultrahigh molecular weight polyethylene composites, Surface and interface analysis. 38 (2006), 883-886.

DOI: 10.1002/sia.2148

Google Scholar

[5] Jiansong Zhou, Fengyuan Yan. Improvement of the Tribological Behavior of Ultra-High-Molecular-Weight Polyethylene by Incorporation of Poly (Phenyl p-Hydroxyzoate), Journal of Applied Polymer Science. 96 (2005), 2336-2343.

DOI: 10.1002/app.21534

Google Scholar

[6] Jinggang Gai, Huilin Li . Ultrahigh Molecular Weight Polyethylene/Polypropylene/Organo-Montmorillonite Nanocomposites: Phase Morphology, Rheological and Mechanical Properties/ Jornal of Applied Polymer Science. 106(2007), 3023-3032.

DOI: 10.1002/app.26913

Google Scholar

[7] Ruan S.L., Gao P., Yang X.G., Yu T.X. Toughening high performance ultrahigh molecular weight polyethylene using multiwalled carbon nanotubes, Polymer. 44 No. 19 (2003), 5643-5654.

DOI: 10.1016/s0032-3861(03)00628-1

Google Scholar

[8] Eon Mi Lee, Young Se Oh, Hyun Soo Ha and Byung Kyu Kim. Rheological properties of UHMWPE/iPP blends, Polym. Adv. Technol. 20 (2009), 1121-1126.

DOI: 10.1002/pat.1387

Google Scholar

[9] Myshkin N.K., Petrokovets M.I., Kovalev A.V. Tribology of polymers: Adhesion, friction, wear and massss-trasfer / Tribology International. 38 (2005), 910-921.

DOI: 10.1016/j.triboint.2005.07.016

Google Scholar

[10] Navin Chang, A.M. Naik, H.K. Khaira. Developmtnt of UHMWPE Modified PP/PET Blends and Their Mechanical and Abrasive Wear Behavior. Polymer Composites. (2007), 267-272.

DOI: 10.1002/pc.20302

Google Scholar

[11] Gongde Liu, Ming Xiang, Huilin Li. A Sudy on Sliding Wear of Ultrahigh Molecular Weight Polyethylene/polypropylene Blends, Polymer Engineering and Science. 44, No. 1, (2004), 197-208.

DOI: 10.1002/pen.20018

Google Scholar

[12] S.V. Panin , L.A. Kornienko, V.P. Sergeev, N. Sonjaitham, M.V. Tchaikina. Wear-Resistant Ultrahigh-Molecular-Weight Polyethylene-Based Nano- and Microcomposites for Implants/Journal of Nanotechnology. 2012(2012), Article ID 729756, 7 p.

DOI: 10.1155/2012/729756

Google Scholar

[13] S.A.R. Hashmi, Somit Neogi, Anuradha Pandey, Navin Chand. Sliding wear of PP/ UHMWPE blends: effect of blend composition, Wear. 247(2001), 9-14.

DOI: 10.1016/s0043-1648(00)00513-5

Google Scholar

[14] N. Tretinnikov, Y. Ikada. Surface Characterization of ion-implanted Polyethylene, J. of Polymer Science: Part B. Polymer Physics. 36(1998), 715-725.

DOI: 10.1002/(sici)1099-0488(199803)36:4<715::aid-polb17>3.0.co;2-i

Google Scholar

[15] S.V. Panin, L.А. Kornienko, S. Wannasri, L.R. Ivanova, S.V. Shilko. Comparison of effectiveness of the modification of UHMWPE by nanofibers (C, Al2O3) and nanoparticles (Cu, SiO2) for obtaining antifrictional composites, Journal of friction and wear. 31, No. 6 (2010).

DOI: 10.3103/s1068366610060097

Google Scholar

[16] S.V. Panin, L.А. Kornienko, S. Piriyaon et al. Antifrictional nanocomposites based on chemically modified ultrahigh molecular weight polyethylene (UHMWPE). Part I. Mechanical and tribotechnical properties of chemically modified UHMWPE, Journal of friction and wear. 32, No. 3 (2011).

DOI: 10.3103/s1068366611030093

Google Scholar

[17] S.V. Panin, L.А. Kornienko, S. Piriyaon et. al. Antifrictional nanocomposites based on chemically modified ultrahigh molecular weight polyethylene (UHMWPE). Part 2. Influence of nanofillers on mechanical and tribotechnical properties of chemically modified UHMWPE, Journal of friction and wear. 32, No. 4 (2011).

DOI: 10.3103/s106836661104009x

Google Scholar

[18] G. Machado, E.L.G. Denardin, E.J. Kinast. Crystalline properties and morphological changes in plastically deformed isotaсtic polypropylene evaluated by X-ray diffraction and transmission electron microscopy, European Polymer Journal. 41 (2005).

DOI: 10.1016/j.eurpolymj.2004.08.011

Google Scholar