Low Temperature Degradation of Y-TZP Ceramic for Dental Applications

Article Preview

Abstract:

Yttria-stabilized tetragonal zirconia polycrystalline (Y-TZP) ceramic has been recently introduced into prosthetic dentistry for the fabrication of crowns and fixed partial dentures (FPDs). The mechanical properties of Y-TZP are the highest ever reported for the all-ceramic materials. This is favorable for the fabrication of multi-unit posterior bridges and the substantial reduction in core thickness. However, Y-TZP ceramic is susceptible to low temperature degradation (LTD), which is detrimental to the long-time survival and aesthetics of zirconia restorations in vivo. This review summarizes the characterization, mechanisms, and influencing factors of the LTD in dental Y-TZP ceramic. In addition, the recent trend of exploring high aging resistant zirconia-based dental ceramics is discussed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

241-249

Citation:

Online since:

December 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C. Piconi and G. Maccauro: Biomaterials, Vol. 20 (1999) No. 1, p.1.

Google Scholar

[2] I. Denry and J.R. Kelly: Dent. Mater, Vol. 24 (2008) No. 3, p.299.

Google Scholar

[3] R. Sorrentino, G. De. Simone, S. Tetè, S. Russo and F. Zarone: Clin. Oral. Invest, Vol. 16 (2012) No. 3, p.977.

DOI: 10.1007/s00784-011-0575-2

Google Scholar

[4] F. Komine, M.B. Blatz and H. Matsumura: J. Oral. Sci, Vol. 52 (2010) No. 4, P. 531.

Google Scholar

[5] P.F. Manicone, P.R. Iommetti and L. Raffaelli: J. Dent, Vol. 35 (2007) No. 11, P. 819.

Google Scholar

[6] H. Yilmaz, C. Aydin and B.E. Gul: J. Prosthet. Dent, Vol. 98 (2007) No. 2, P. 120.

Google Scholar

[7] M. Guazzato, K. Proos, L. Quach and M.V. Swain: Biomaterials, Vol. 25 (2004) No. 20, P. 5045.

Google Scholar

[8] P. Pittayachawan, A. McDonald, A. Petrie and J.C. Knowles: Dent. Mater, Vol. 23 (2007) No. 8, p.1018.

Google Scholar

[9] M.J. Heffernan, S.A. Aquilino and A.M. Diaz-Arnold: J. Prosthet. Dent, Vol. 88 (2002) No. 1, p.4.

Google Scholar

[10] F.F. Lange, G.L. Dunlop and B.I. Davis: J. Am. Ceram. Soc, Vol. 69 (1986) No. 3, p.237.

Google Scholar

[11] T. Sato, and M. Shimada: J. Mater. Sci, Vol. 20 (1985) No. 11, p.3988.

Google Scholar

[12] J.J. Swab: J. Mater. Sci, Vol. 26 (1991) No. 24, p.6706.

Google Scholar

[13] H. Tsubakino, M. Hamamoto and T. Nozato: J. Mater. Sci, Vol. 26 (1991) No. 20, p.5521.

Google Scholar

[14] S. Lawson: J. Eur. Ceram. Soc, Vol. 15 (1995) No. 6, p.485.

Google Scholar

[15] K. Kobayashi, H. Kuwajima and T. Masaki: Solid State Ion, Vol. 3-4 (1981), p.489.

Google Scholar

[16] J. Chevalier: J. Am. Ceram. Soc, Vol. 82 (2004) No. 8, p.2150.

Google Scholar

[17] J. Chevalier: Biomaterials, Vol. 27 (2006) No. 4, p.535.

Google Scholar

[18] J. Chevalier and L. Gremillard: J. Am. Ceram. Soc, Vol. 92 (2009) No. 2, p. (1901).

Google Scholar

[19] V. Lughi and V. Sergo: Dent. Mater, Vol. 26 (2010) No. 8, p.807.

Google Scholar

[20] M. Cattani-Lorente, S.S. Scherrer, P. Ammann and M. Jobin: Acta. Biomater, Vol. 7 (2011) No. 2, p.858.

Google Scholar

[21] B.D. Flinn, D.A. deGroot and L.A. Mancl: J. Prosthet. Dent, Vol. 108 (2012) No. 4, p.223.

Google Scholar

[22] T. Kosmač and A. Kocjan: J. Eur. Ceram. Soc, Vol. 32 (2012) No. 11, p.2613.

Google Scholar

[23] J.A. Muñoz-Tabares, E. Jiménez-Piqué and M. Anglada: Acta. Mater, Vol. 59 (2011) No. 2, p.473.

Google Scholar

[24] T. Sato, S. Ohtaki and M. Shimada: J. Mater. Sci, Vol. 20 (1985) No. 4, p.1466.

Google Scholar

[25] M. Yoshimura: Am. Ceram. Sot. Bull, Vol. 67 (1988) No. 12, p. (1950).

Google Scholar

[26] M. Yoshimura, T. Noma and K. Kawabata: J. Mater. Sci. letter, Vol. 6 (1987) No. 4, p.465.

Google Scholar

[27] R.L.K. Matsumoto: J. Am. Ceram. Soc, Vol. 68 (1985) No. 8, p. c-213.

Google Scholar

[28] T. Sato and M. Shimada: J . Am. Ceram. Soc, Vol. 68 (1985) No. 6, p.356.

Google Scholar

[29] M. Yoshimura, T. Hiuga and S. Sômiya: J. Am. Cerum. Soc, Vol. 69 (1986) No. 7, p.583.

Google Scholar

[30] M.T. Hernandez, J.R. Jurado and P. Duran: J. Am. Ceram. Soc. Vol, 74 (1991) No. 6, p.1254.

Google Scholar

[31] X. Guo: J. Mater. Sci. Vol, 36 (2001) No. 15, p.3737.

Google Scholar

[32] X. Guo: Chem. Mater. Vol, 16 (2004) No. 21, p.3988.

Google Scholar

[33] K. Tsukuma, Y. Kubota and T. Tsukidate: Adv. Ceram, Vol. 12 (1984), p.382.

Google Scholar

[34] J.F. Li and R. Watanabe: J. Am. Ceram. Soc, Vol. 81 (1998) No. 10, p.2687.

Google Scholar

[35] S. Guicciardi, T. Shimozono and G. Pezzotti: J. Mater. Sci, Vol. 42 (2007) No. 2, p.718.

Google Scholar

[36] A. Paul, B. Vaidhyanathan and J.G.P. Binner: J. Am. Ceram. Soc, Vol. 94 (2011) No. 7, p.2146.

Google Scholar

[37] Z. Wu, N. Li, C. Jian, W. Zhao and J. Yan: Ceram. Int, Vol. 39 (2013) No. 6, p.7199.

Google Scholar

[38] J. Eichler, J. Rödel and U. Eisele: J. Am. Ceram. Soc, Vol. 90 (2007) No. 9, p.2830.

Google Scholar

[39] A. Suresh, M. Mayo, W. D. Porter and C. J. Rawn: J. Am. Ceram. Soc, Vol. 86 (2003) No. 2, p.360.

Google Scholar

[40] S. Deville, J. Chevalier and L. Gremillard: Biomaterials, Vol. 27 (2006) No. 10, p.2186.

Google Scholar

[41] J. Li, L. Zhang, Q. Shen and T. Hashida: Mater. Sci. Eng. A, Vol. 297 (2001) No. 1, p.26.

Google Scholar

[42] G. Magnani and A. Brillante: J. Am. Ceram. Soc, Vol. 25 (2005) No. 15, p.3383.

Google Scholar

[43] S. Schmauder and H. Schubert: J. Am. Ceram. Soc, Vol. 69 (1986) No. 7, p.534.

Google Scholar

[44] K. Matsui, N. Ohmichi and M. Ohgai: J. Mater. Res, Vol. 21 (2006) No. 9, p.2278.

Google Scholar

[45] J. Chevalier, S. Deville, E. Münch, R. Jullian and F. Lair: Biomaterials, Vol. 25 (2004) No. 24, p.5539.

Google Scholar

[46] K. Tsukama and M. Shimada: J. Mater. Sci, Vol. 4 (1985) No. 7, p.857.

Google Scholar

[47] H. Tsubakino, R. Nozato and M. Hamamoto: J. Am. Ceram. Soc, Vol. 74 (1991) No. 2, p.440.

Google Scholar

[48] J.F. Li and R. Watanabe: J. Mater. Sci, Vol. 32 (1997) No. 5, p.1149.

Google Scholar

[49] E.S. Elshazly, M.E.S. Ali and S.M. El-Hout: J. Mater. Sci, Vol. 24 (2008) No. 6, p.873.

Google Scholar

[50] F. F. Lange: J. Mater. Sci, Vol. 17 (1982) No. 1, p.225.

Google Scholar

[51] B. Basu: Int. Mater. Rev, Vol. 50 (2005) No. 4, p.239.

Google Scholar

[52] J. Wang and R. Stevens: J. Mater. Sci, Vol. 24 (1989) No. 10, p.3421.

Google Scholar

[53] A. Nevarez-Rascon and A. Aguilar-Elguezabal: Int. J. Refract. Met. H, Vol. 27 (2009) No. 6, p.962.

Google Scholar

[54] D. Casellas, I. Ràfols, L. Llanes and M. Anglada: Int. J. Refract. Met. H, Vol. 17 (1999) No. 1, p.11.

Google Scholar

[55] S.R. Choi and N.P. Bansal: Ceramics International, Vol. 31 (2005) No. 1, p.39.

Google Scholar

[56] A.H.D. Aza, J. Chevalier, G. Fantozzi, M. Schehl and R. Torrecillas: Biomaterials, Vol. 23 (2002) No. 3, p.937.

DOI: 10.1016/s0142-9612(01)00206-x

Google Scholar

[57] J. Schneider, S. Begand and R. Kriegel: J. Am. Ceram. Soc, Vol. 91 (2008) No. 11, p.3613.

Google Scholar

[58] S. Deville, J. Chevalier, G. Fantozzi and J.F. Bartolomé: J. Eur. Ceram. Soc, Vol. 23, (2003) No. 15, p.2975.

Google Scholar

[59] F. Kern and R. Gadow: J. Eur. Ceram. Soc, Vol. 32 (2012) No. 15, p.3911.

Google Scholar

[60] S. Begand, T. Oberbach and W. Glien: Key. Eng. Mater, Vol. 4 (2006), p.309.

Google Scholar

[61] J. Chevalier, S. Grandjean, M. Kuntz and G. Pezzotti: Biomaterials, Vol. 30 (2009) No. 29, p.5279.

Google Scholar

[62] M.M.R. Boutz, A.J.A. Winnubst and B. Van Langerak: J. Mater. Sci, Vol. 30 (1995) No. 7, p.1854.

Google Scholar

[63] S.R. Jansen, A.J.A. Winnubst, Y.J. He and H. Verweij: J. Eur. Ceram. Soc, Vol. 18 (1998) No. 5, p.557.

Google Scholar

[64] J.D. Lin and J.G. Duh: Mater. Chem. Phys, Vol. 78 (2003) No. 1, p.246.

Google Scholar