Fabrication of Mullite Fiber Reinforced SiC Porous Ceramic

Article Preview

Abstract:

Ceramic fibers and whiskers have been used for modification of toughness because they increase fracture energy due to their high elastic modulus strength. The mechanism of this increase is well known to be pull-out, crack deflection and a bridging mechanism. This study focused on the increase in toughness, strength and thermal shock resistance when using mullite fibers in a gas filter for high temperatures. The green body uses the average 230μm particle diameter of SiC powders, which used as a skeletal material , the length to diameter ratio greater than 10 of the mullite fibers and the mixture of kaolin, feldspar and silica, which was used as a binder. The pore former be made up of graphite and active carbon. The molding pressure is 3MPa, and sintering temperature is 1300°C. The mullite fiber reinforced SiC porous ceramic has low filter pressure drop, 30.36% porosity and 35.66MPa flexural strength, which is higher than the SiC porous ceramic whitout mullite fibers. And the flexural strength degradation was only 5.4% after thermal shock tests.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

250-256

Citation:

Online since:

December 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T. Iseki, T. Maruyama, T. Yano, T. Suzuki and T. Mori, J. Nuclear Mater. Vol. 170 (1990) No. 1, p.95.

Google Scholar

[2] Y. Ohya, M. J. Hoffmann and G. Petzon, J. Am. Ceram. Soc. Vol. 75 (1992) No. 9, p.2479.

Google Scholar

[3] H. Kodama and T. Miyoshi, J. Am. Ceram. Soc. Vol. 75 (1992) No. 6, p.1558.

Google Scholar

[4] M. A. Mulla and V. D. Krstic, Acta Metall. Mater. Vol. 42 (1994) No. 1, p.303.

Google Scholar

[5] J. S. Lee and T. Yano, J. Eur. Ceram. Soc. Vol. 24 (2004) No. 1, p.25.

Google Scholar

[6] A.R. Boccaccini, S. Atiq, D. N. Boccaccini, I. Dlouhy and C. Kaya, Comp. Sci. Technol. Vol. 65 (2005) No. 2, p.325.

Google Scholar

[7] X. D. Ma, T. Ohtsuka, S. Hayashi and Z. Nakagawa, Comp. Sci. Technol. Vol. 66 (2006) No. 15, p.3089.

Google Scholar

[8] C. Kaya, F. Kaya and H. Mori, J. Eur. Ceram. Soc. Vol. 22 (2002) No. 4, p.447.

Google Scholar

[9] C. Kaya, F. Kaya and H. Mori, J. Eur. Ceram. Soc. Vol. 22 (2002) No. 4, p.447.

Google Scholar

[10] C. Kaya, E. G. Butler, A. R. Boccaccini and M. H. Lewis: High Temperature Ceramic Matrix Composites (Wiley-VCH, Germany 2001), p.639.

Google Scholar

[11] F. Kaya, Ceram. Inter. Vol. 33 (2007) No. 2, p.279.

Google Scholar

[12] C. Kaya, F. Kaya and H. Mori, J. Mater. Sci. Lett. Vol. 21 (2002) No. 17, p.1333.

Google Scholar

[13] C. Kaya, X. Gu, I. Al-Dawery and E.G. Butler, Sci. Technol. Adv. Mater. Vol. 3 (2002) No. 1, p.35.

Google Scholar

[14] C. Mroz, J. Amer. Ceram. Vol. 72 (1993) No. 9, p.89.

Google Scholar

[15] G. Gerger, J. Amer. Ceram. Vol. 70 (1991) No. 2, p.212.

Google Scholar

[16] J. Wang, M. R. Piramoon, C. B. Ponton and P. M. Marquis, J. Brit. Ceram. Trans. Vol. 90 (1991) No. 4, p.105.

Google Scholar

[17] Yoshihiro H, Shinichi M, Yoshimi L, et al. J Am. Ceram. Soc. Vol. 74 (1991), No. 10, p.2438.

Google Scholar