Controlled Synthesis of Cu2O Sheet-Like Particles by a Simple Solution Method

Article Preview

Abstract:

Cuprous oxide sheet-like particles had been synthesized via a wet chemical treatment of CuSO4·5H2O and NaOH in the solution at room temperature for 1 h. The as-prepared Cu2O sheet-like particles were characterized by X-ray powder diffraction (XRD), Field-emission scanning electron microscopy (FESEM) and high-resolution transmission electron microscopy (HRTEM). Cu2O sheet-like particles was determined by these parameters (the amount of polyvinylpyrrolidone (PVP-K30) and reaction time). The possible formation mechanism for the products has been presented. The photocatalytic properties of the as-synthesized samples show the size/shape-dependent properties and potential applications.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

279-284

Citation:

Online since:

December 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] I. Grozdanov: Material Letter, Vol 19 ( 1994), p.281.

Google Scholar

[2] M.Y. Shen, T. Yokouchi, S. Koyama and T. Goto: Physical Review B: Condensed Matter, Vol 56(1997), p.13066.

Google Scholar

[3] W. Shi, K. Lin and X. Lin: Journal of Applied Physics, Vol 81(1997), p.2822.

Google Scholar

[4] R.N. Briskman: Solar Energy Materials and Solar Cells, Vol 27(1992), p.361.

Google Scholar

[5] A.O. Musa, T. Akomolafe and M.J. Carter: Solar Energy Materials and Solar Cells, Vol 51(1998), p.305.

Google Scholar

[6] M. Hara, T. Kondo, M. Komoda, S. Ikeda, K. Shinohara, A. Tanaka, J.N. Kondo and K. Domen: Chemical Communications, Vol 3(1998), p.357.

DOI: 10.1039/a707440i

Google Scholar

[7] P.E. de Jongh, D. Vanmaekelbergh and J.J. Kelly: Chemical Communications, Vol 12(1999), p.1069.

Google Scholar

[8] Y. Ding, S. H. Yu, C. Liu and Z A. Zang: Chemistry- A European Journal, Vol 13(2007), p.746.

Google Scholar

[9] L. F. Gou and C. J. Murphy: Nano Letter, Vol 3(2003), p.231.

Google Scholar

[10] Z. Ai, H. Xiao, T. Mei, J. Liu, L. Zhang, K. Deng and J. Qiu: Journal of Physical Chemistry C, 2008, 112, 11929.

Google Scholar

[11] M. J. Siegfried and K. S. Choi: Advanced Materials, Vol 16(2004), p.1743.

Google Scholar

[12] S. Sun, F. Zhou, L. Wang, X. Song and Z. Yang: Crystal Growth & Design, Vol 10(2010), p.541.

Google Scholar

[13] M. J. Siegfried and K. S. Choi: Angewandte Chemie International Edition, Vol 44(2005), p.3218.

Google Scholar

[14] W. Zhao, W. Fu, H. Yang, C. Tian, R. Ge, C. Wang, Z. Liu, Y. Zhang, M. Li and Y. Li: Applied Surface Science, Vol 256(2010), p.2269.

Google Scholar

[15] X. D. Su, J. Z. Zhao, H. Bala, Y. C. Zhu, Y. Gao, S. S. Ma and Z. C. Wang: Journal of Physical Chemistry C, Vol 111(2007), p.14689.

Google Scholar

[16] Y. Sui, W. Fu, Y. Zeng, H. Yang, Y. Zhang, H. Chen, Y. Li, M. Li and G. Zou: Angewandte Chemie International Edition, Vol 49(2010), p.4282.

DOI: 10.1002/anie.200907117

Google Scholar

[17] M. Ma and Y. Zhu: Journal of Alloys and Compounds, Vol 455(2008), p. L15.

Google Scholar

[18] W. Z. Wang, G. H. Wang, X. S. Wang, Y. J. Zhan, Y. K. Liu and C. L. Zheng: Advanced Materials, Vol 14(2002), p.67.

Google Scholar

[19] H. W. Zhang, X. Zhang, H. Y. Li, Z. K. Qu, S. Fan and M. Y. Ji: Crystal Growth & Design, Vol 7(2007), p.820.

Google Scholar

[20] M. Wei and J. Huo: Materials Chemistry and Physics, Vol 121(2010), p.291.

Google Scholar

[21] Y. S. Luo, S. Q. Li, Q. F. Ren, J. P. Liu, L. L. Xing, Y. Wang, Y. Yu, Z. J. Jia and J. L. Li: Crystal Growth & Design, Vol 7(2007), p.87.

Google Scholar

[22] Y. Sui, W. Fu, H. Yang, Y. Zeng, Y. Zhang, Q. Zhang, Y. Li, X. Zhou, Y. Leng, M. Li and G. Zou: Crystal Growth & Design, Vol 10(2010), p.99.

Google Scholar

[23] Y. Wang, Y. Wang, Y.L. Meng, H.M. Ding, Y.K. Shan, X. Zhao and X.Z. Tang: Journal of Physical Chemistry C, Vol 112(2008), p.6620.

Google Scholar