Influence of Sputtering Power on Molybdenum-Doped Zinc Oxide Films Grown by RF Magnetron Sputtering

Article Preview

Abstract:

Molybdenum-doped zinc oxide (MZO) films have been prepared by RF magnetron sputtering on glass substrates at room temperature. The structural, electrical and optical properties of the films vary with sputtering power from 15 W to 70 W are investigated. X-ray diffraction (XRD) analysis reveals that all the films are polycrystalline with the hexagonal structure and have a preferred orientation along the c axis perpendicular to the substrate. The resistivity increases with the increase of the RF power. The lowest resistivity achieved is 5.4×10-3 Ω cm at a RF power of 15 W with a Hall mobility of 11 cm2 V-1 s-1 and a carrier concentration of 1.1×1019 cm-3. The average transmittance drops from 85% to 81% in the visible range and the optical band gap decreases from 3.26 eV to 3.19 eV with the increase of the RF power.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

426-430

Citation:

Online since:

December 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Tadatsugu, T. Shinzo, and K. Toshikazu: Journal of Vacuum Science and Technology A. Vol. 14 (1996), p.1689.

Google Scholar

[2] J. Puetz, F. N. Chalvet, and Michel A. Aegerter: Proceedings of the SPIE-The International Society for Optical Engineering. Vol. 4804 (2002), p.73.

Google Scholar

[3] X. Jiang, F. L. Wong, M. K. Fung, and S. T. Lee: Applied Physics Letters. Vol. 83 (2003), p.1875.

Google Scholar

[4] Akhlesh Gupta and Alvin D. Compaan: Applied Physics Letters. Vol. 85 (2004) , p.684.

Google Scholar

[5] M. F. A. M. Van Hest, M. S. Dabney, J. D. Perkins and D. S. Ginley: Thin Solid Films. Vol. 496 (2006), p.70.

DOI: 10.1016/j.tsf.2005.08.314

Google Scholar

[6] Y. Meng, X. L. Yang, H. X. Chen, J. Shen, Y. M. Jiang, Z. J. Zhang and Z. Y. Hua: Thin Solid Films. Vol. 394 (2001), p.219.

Google Scholar

[7] E. Gautier, A. Lorin, J. M. Nunzi, A. Schalchli, J. J. Benattar, and D. Vital: Applied Physics Letters. Vol. 69 (1996) , p.1071.

DOI: 10.1063/1.116934

Google Scholar

[8] D. K. Hwang, K. H. Bang, M. C. Jeong, and J. M. Myoung: Journal of Crystal Growth. Vol. 254 (2003) , p.449.

Google Scholar

[9] S. Ben Amor, B. Rogier, G. Baud, M. Jacquet, and M. Nardin: Materials Science and Engineering B. Vol. 57 (1998) , p.28.

DOI: 10.1016/s0921-5107(98)00205-0

Google Scholar

[10] D. H. Zhang, T. L. Yang, J. Ma, Q. P. Wang, R. W. Gao, and H. L. Ma: Applied Surface Science. Vol. 158 (2000) , p.43.

Google Scholar

[11] E. Fortunato, V. AssunÇalves, A. Marques, H. Águas, L. Pereira, I. Ferreira, P. Vilarinho and R. Martins: Thin Solid Films. Vol. 451–452 (2004) , p.443.

DOI: 10.1016/j.tsf.2003.10.139

Google Scholar

[12] Yasuhiro lgasaki and Hiromi Saito: Journal of Applied Physics. Vol. 70 (1991) , p.3613.

Google Scholar

[13] Y. M. Lu, W. S. Hwang, W. Y. Liu, and J. S. Yang: Materials Chemistry and Physics. Vol. 72 (2001) , p.269.

Google Scholar

[14] E. Kaldis: Current Topics in Materials Science (North-Holland Publishing Company Amsterdam-New York-Oxford, Holland, 2001).

Google Scholar

[15] B. M. Ataev, A. M. Bagamadova, V. V. Mamedov, A. K. Omaev, and M. R. Rabadanov: Journal of Crystal Growth. Vol. 198/199 (1999) , p.1222.

DOI: 10.1016/s0022-0248(98)01217-2

Google Scholar