A Finite Element Solution for Frictional Sliding Contact between Hyper-Elastic and Rigid Bodies

Article Preview

Abstract:

This paper is devoted to the analysis of frictional contact problems with large deformations and displacements between hyper-elastic body and rigid body. The material nonlinearity and contact nonlinearity are separated and, the geometrically nonlinear behavior is described by the total Lagrange formulation. The Coulomb friction law is employed to simulate the friction between rigid vessel and rubber by the use of augmented Lagrange approach with node-to-segment formulation. A formulation of finite element is taken in this paper to describe the frictional contact problem, which is solved by the Newton-Raphson iterative procedure. It is shown that the augmented Lagrange technique significantly avoids locking and over-constraining and provides optimal convergence rate. Finally, the numerical results show that the accuracy and efficiency of augmented Lagrange approach in modeling large deformation frictional contact problem.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

445-455

Citation:

Online since:

December 2013

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. Hertz: J. für reine und Angew. Math, Vol. 92 (1881), p.156.

Google Scholar

[2] A.L. Galin: Contact Problems of the Theory of Elasticity, (Gostekhizdat, Moscow1953).

Google Scholar

[3] J.E. Merwin, K.L. Johnson: Proceedings of the Institution of Mechanical Engineers, Vol. 177 (1963) No. 1, p.676.

Google Scholar

[4] R.H. Bentall, K.L. Johnson: International Journal of Mechanical Sciences, Vol. 9 (1967) No. 6, p.389.

Google Scholar

[5] F.W. Carter: Proc, Roy. Soc., (A), Vol. 112 (1926), p.151.

Google Scholar

[6] J.J. Kalker, A.D. De Pater: Soviet Applied Mechanics, Vol. 7 (1971) No. 5, p.9.

Google Scholar

[7] Y.A. Buevich, A.I. Leonov: Journal of Applied Mechanics and Technical Physics, Vol. 6 (1965) No. 6, p.50.

Google Scholar

[8] A.E. Alekseev: Journal of Applied Mechanics and Technical Physics, Vol. 43 (2002) No. 4, p.622.

Google Scholar

[9] F. Armero, E. Petöcz: Comput Methods Appl Mech Eng, Vol. 158 (1998) No. 3-4, p.269.

Google Scholar

[10] N. Kikuchi: Penalty/Finite Element Approximations of a Class of Unilateral Contact Problems, Penalty Method and Finite Element Method, (ASME, New York1982).

Google Scholar

[11] S.H. Chan, I.S. Tuba: Int.J. Mech. Sci, Vol. 13 (1971) No. 7, p.615.

Google Scholar

[12] B. Fredriksson: Comput. Struct, Vol. 6 (1976) No. 4-5, p.281.

Google Scholar

[13] N. Kikuchi, J.T. Oden: Contact Problems in Elastiticity, (SIA, USA1988).

Google Scholar

[14] J.S. Arora, A.I. Chahande and J.K. Paeng: Int J NumerMethods Eng, Vol. 32 (1991) No. 7, p.1485.

Google Scholar

[15] T.J.R. Hughes, R.L. Taylor, J.L. Sackman, A. Curnier and W. Kanoknukulchai: Comput Methods Appl Mech Eng, Vol. 8 (1976) No. 3, p.149.

Google Scholar

[16] P. Alart, A. Curnier: Comput Meth Appl Mech Eng, Vol. 92 (1991) No. 3, p.253.

Google Scholar

[17] de. Saxcé. G, Z.Q. Feng: Mech Struct Mach, Vol. 19 (1991) No. 3, p.301.

Google Scholar

[18] J.C. Simo, T.A. Laursen: Comput Struct, Vol. 42 (1992) No. 1, p.97.

Google Scholar

[19] H.X. Lv: Chinese Journal of Solid Mechanics(In Chinese), 1983 No. 4, p.83.

Google Scholar

[20] A. Curnier, Q.C. He and A. Klarbring: Contact Mechanics (Plenum, New York1995), p.145.

Google Scholar

[21] G. Pietrzak, A. Curnier: Comput. Methods Appl. Mech. Eng, Vol. 177 (1999) No. 3-4, p.351.

Google Scholar

[22] A. Klarbring: Eur.J. Mech. A/Solids, Vol. 14 (1995) No. 2, p.237.

Google Scholar

[23] A. Batailly, B. Magnain and N. Chevaugeon: Comput Mech, Vol. 51 (2013), p.581.

Google Scholar

[24] G. Zavarise, P. Wriggers: Math. Comput. Model, Vol. 28 (1998) No. 4-8, p.497.

Google Scholar

[25] M. Tur, F.J. Fuenmayor and P. Wriggers: Comput. Methods Appl. Mech. Engrg, Vol. 198 (2009) No. 37-40, p.2860.

Google Scholar

[26] İ. Temizer, P. Wriggers and T.J.R. Hughes: Comput. Methods Appl. Mech. Engrg, Vol. 209-212 (2012), p.115.

Google Scholar

[27] M. Franke, C. Hesch, and P. Betsch: Int. J. Numer. Meth. Engng, Vol. 94 (2013) No. 5, p.513.

Google Scholar

[28] M. Sasso, G. Palmieri, G. Chiappini and D. Amodio: Polymer Testing, Vol. 27 (2008) No. 8, p.995.

Google Scholar

[29] M. Mooney: Journal of Applied Physics, Vol. 11 (1940) No. 9, p.582.

Google Scholar

[30] L.R.G. Treloar: Rubber Chemistry and Technology, Vol. 19 (1944) No. 4, p.957.

Google Scholar

[31] R.S. Rivlin: Philosophical Transactions of the Royal Society of London-Series A, Vol. 241 (1948) No. 835, p.379.

Google Scholar

[32] W. Wang, T. Deng and S.G. Zhao: Special Purpose Rubber Products(In Chinese), Vol. 25 (2004) No. 4, p.8.

Google Scholar

[33] T.A. Laursen: Computational Contact and Impact Mechanics, (Springer, Berlin2002).

Google Scholar

[34] J. Lengiewicz, J. Korelc and S. Stupkiewicz: Int. J. Numer. Meth. Engng, Vol. 85 (2011) No. 10, p.1252.

Google Scholar

[35] T.A. Laursen, J.C. Simo: International Journal for Numerical Methods in Engineering, Vol. 36 (1993) No. 20, p.3451.

Google Scholar

[36] Z.Q. Feng, F. Peyraut and N. Labed: International Journal of Engineering Science, Vol. 41 (2003) No. 19, p.2213.

Google Scholar