Electronic Structure Tuning and Interface Charge Transfer in Hybrid Graphene/Titania and Adatom/Graphene/Titania: First Principles Calculations

Article Preview

Abstract:

Firstly, density functional calculation was employed to evaluate the electronic structure of graphene/TiO2(100) composite. The results demonstrated that lattice mismatch between graphene and the titania surface brought about apparent modification to the crystal structure and electronic structure of graphene. Additionally, graphene adsorbed with several different adatoms were combined with the titania surface. The effects of the adatoms on the electronic structure and electron transition characteristic of the complex of adatom/graphene/TiO2(100) were evaluated. The results indicated that the adatoms of B and Al shifted the DOS minimum of graphene to the lower energy side of the Fermi level while N, S, F, Pt and Au caused the opposite effect. The adatoms of Pd, Cr and Mn exhibited no obvious effect on the electron transition characteristic of the composite but effectively introduced midgap states. The results demonstrated that adatom/graphene/titania hybrid composite would exhibit excellent potential for photocatalytic application.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

471-478

Citation:

Online since:

December 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva and A.A. Firsov: Science, Vol. 306 (2004) No. 5696, p.666.

DOI: 10.1126/science.1102896

Google Scholar

[2] C. Lee, X. Wei, J. W. Kysar and J. Hone: Science, Vol. 321 (2008) No. 5887, p.385.

Google Scholar

[3] A.K. Geim: Science, Vol. 324 (2009) No. 5934, p.1530.

Google Scholar

[4] S. Garaj, W. Hubbard, A. Reina, J. Kong, D. Branton and J.A. Golovchenko: Nature, Vol. 467 (2010) No. 7312, p.190.

DOI: 10.1038/nature09379

Google Scholar

[5] J. Wu, M. Agrawal, H.A. Becerril, Z. Bao, Z. Liu, Y. Chen and P. Peumans: American Chemistry Society Nano, Vol. 4 (2010) No. 1, p.43.

Google Scholar

[6] H. Park, J.A. Roweh, K.K. Kim, V. Bulovic and J. Kong: Nanotechnology, Vol. 21 (2010) No. 50, p.505204.

Google Scholar

[7] R. Chowdhury, S. Adhikari, P. Rees, S. P. Wilks and F. Scarpa: Physics Review B, Vol. 83 (2011) No. 4, p.045401.

Google Scholar

[8] Y.H. Hu, H. Wang and B. Hu: Chemistry and Sustainable Chemistry, Vol. 3 (2010) No. 7, p.782.

Google Scholar

[9] K.I. Bolotin, K.J. Sikes, Z. Jiang, M. Klima, G. Fundenberg, J. Hone, P. Kim and H.L. Stormer: Solid State Communication, Vol. 146 (2008) No. 9-10, p.351.

DOI: 10.1016/j.ssc.2008.02.024

Google Scholar

[10] T. Ohta, A. Bostwick, T. Seyller, K. Horn and E. Rotenberg: Science, Vol. 313 (2006) No. 5789, p.951.

DOI: 10.1126/science.1130681

Google Scholar

[11] S.Y. Zhou, G.H. Gweon, A.V. Fedorov, P. First, W. de Heer, D.H. Lee, F. Guinea, A.C. Neto and A. Lanzara: Nature Materials. Vol. 6 (2007) No. 10, p.770.

DOI: 10.1038/nmat2003

Google Scholar

[12] G. Gui, J. Li and J. Zhong: Physics Review B, Vol. 78 (2008) No. 7, p.075435.

Google Scholar

[13] Y. Zhang, C.H. Hu, Y.H. Wen, S.Q. Wu and Z.Z. Zhu: New Journal of Physics, Vol. 13 (2011) No. 6, p.063047.

Google Scholar

[14] B. Verberck, B. Partoens, F. M. Peeters and B. Trauzettel: Physics Review B, Vol. 85 (2012) No. 12, p.125403.

Google Scholar

[15] Y.W. Son, M.L. Cohen and S.G. Louie: Nature, Vol. 444 (2006) No. 7117, p.347.

Google Scholar

[16] Y.W. Son, M.L. Cohen and S.G. Louie: Physics Review Letters, Vol. 97 (2006) No. 21, p.216803.

Google Scholar

[17] R. Balog, B. Jørgensen, L. Nilsson, M. Andersen, E. Rienks, M. Bianchi, M. Fanetti, E. Lægsgaard, A. Baraldi, S. Lizzit, Z. Sljivancanin, F. Besenbacher, B. Hammer, T.G. Pedersen, P. Hofmann and L. Hornekær: Nature Materials, Vol. 9 (2010).

DOI: 10.1038/nmat2710

Google Scholar

[18] D.C. Wei, Y.Q. Liu, Y. Wang, H.L. Zhang, L.P. Huang and G. Yu: Nano Letters, Vol. 9 (2009) No. 5, p.1752.

Google Scholar

[19] L.S. Panchokarla, K.S. Subrahmanyam, S.K. Saha, A. Govindaraj, H.R. Krishnamurthy, U.V. Waghmare and C.N.R. Rao: Advanced Materials, Vol. 21 (2009) No. 46, p.4726.

Google Scholar

[20] Z. Sun, Z. Yan, J. Yao, E. Beitler, Y. Zhu and J.M. Tour: Nature, Vol. 468 (2010) No. 4, p.549.

Google Scholar

[21] C. Zhang, L. Fu, N. Liu, M. Liu, Y. Wang and Z. Liu: Advanced Materials, Vol. 23 (2011) No. 18, p.1020.

Google Scholar

[22] Y. Xue, B. Wu, L. Jiang, Y. Guo, L. Huang, J. Chen, J. Tan, D. Geng, B. Luo, W. Hu, G. Yu and Y. Liu: Journal of the American Chemistry Society, Vol. 134 (2012) No. 27, p.11060.

Google Scholar

[23] A. Fujishima, T.N. Rao and D.A. Tryk: Journal of Photochemistry and Photobiology C, Vol. 1 (2000) No. 1, p.1.

Google Scholar

[24] M.J. Grätzel: Journal of Photochemistry and Photobiology A, Vol. 164 (2004) No. 1-3, p.3.

Google Scholar

[25] X. Chen and S.S. Mao: Chemical Reviews, Vol. 107 (2007) No. 7, p.2891.

Google Scholar

[26] A. Fujishima and K. Honda: Nature, Vol. 37 (1972) No. 2, p.238.

Google Scholar

[27] L. Braginsky and V. Shklover, European Physical Journal D, Vol. 9 (1999) No. 6, p.627.

Google Scholar

[28] T. Umebayashi, T. Yamaki, H. Itoh and L. Asai: Journal of Physics and Chemistry of Solids, Vol. 63 (2002) No. 10, p. (1909).

Google Scholar

[29] R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki and Y. Taga: Science, Vol. 293 (2001) No. 5528, p.269.

DOI: 10.1126/science.1061051

Google Scholar

[30] X. Qian, D. Qin, Y. Bai, T. Li, X. Tang, E. Wang and S. Dong: Journal of Solid State Electrochemistry, Vol. 5 (2001) No. 7-8, p.562.

Google Scholar

[31] Q. Shen, D. Arac and T. Toyoda: Journal of Photochemistry and Photobiology A: Chemistry, Vol. 164 (2004) No. 1-3, p.75.

Google Scholar

[32] Y. Ohko, T. Tatsuma, T. Fujii, K. Naoi, C. Niwa, Y. Kubota and A. Fujishima: Nature Materials, Vol. 2 (2003) No. 1, p.29.

DOI: 10.1038/nmat796

Google Scholar

[33] K. Kawahara, K. Suzuki, Y. Ohko and T. Tatsuma: Physical Chemistry and Chemical Physics, Vol. 7 (2005) Vol. 16, p.3851.

Google Scholar

[34] M. Adachi, Y. Murata, J. Takao, J. Jiu, M. Sakamoto and F. Wang: Journal of the American Chemistry Society, Vol. 126 (2004) No. 45, p.14943.

Google Scholar

[35] R. Argazzi, C.A. Bignozzi, M. Yang, G.M. Hasselmann and G. J. Meyer: Nano Letters, Vol. 2 (2002) No. 6, p.625.

Google Scholar

[36] B. A. Gregg, S. G. Chen and S. Ferrere: Journal of Physical Chemistry B, Vol. 107 (2003) No. 13, p.3019.

Google Scholar

[37] K. Woan, G. Pyrgiotakis and W. Sigmund: Advanced Materials, Vol. 21 (2009) No. 21, p.2233.

Google Scholar

[38] A. Kongkanand, R. M. Domingues and P. V. Kamat: Nano Letters, Vol. 7 (2007) No. 3, p.676.

Google Scholar

[39] R.R. Nair, P. Blake, A.N. Grigorenko, K.S. Novoselov, T.J. Booth, T. Stauber, N.M.R. Peres and A.K. Geim: Science, Vol. 320 (2008) No. 5881, p.1308.

DOI: 10.1126/science.1156965

Google Scholar

[40] M. D. Stoller, S. Park, Y. Zhu, J. An and R. S. Ruoff: Nano Letters, Vol. 8 (2008) No. 10, p.3498.

Google Scholar

[41] G. Williams, B. Seger, and P. V. Kamat: American Chemical Society Nano, Vol. 2 (2008) No. 7, p.1487.

Google Scholar

[42] H. Zhang, X.J. Lv, Y.M. Li, Y. Wang and J.H. Li: American Chemical Society Nano, Vol. 4 (2010) No. 1, p.380.

Google Scholar

[43] K. K. Manga, Y. Zhou, Y. L. Yan and K. P Loh: Advanced Functional Materials, Vol. 19 (2009) No. 22, p.3638.

Google Scholar

[44] Y.B. Tang, C.S. Lee, J. Xu, Z.T. Liu, Z.H. Chen, Z.B. He, Y.L. Cao, G.D. Yuan, H.S. Song, L.M. Chen, L.B. Luo, H.M. Cheng, W.J. Zhang, I. Bello and S.T. Lee: American Chemical Society Nano, Vol. 4 (2010) No. 6, p.3482.

Google Scholar

[45] K. Zhou, Y. Zhu, X. Yang, X. Jiang and C. Li: New Journal of Chemistry, Vol. 35 (2011) No. 2, p.353.

Google Scholar

[46] J.S. Lee, K.H. You and C.B. Park: Advanced Materials, Vol. 24 (2012) No. 8, p.1084.

Google Scholar

[47] N.R. Khalid, E. Ahmed, Z. Hong, Y. Zhang and M. Ahmad: Current Applied Physics, Vol. 12 (2012) No. 6, p.1485.

Google Scholar

[48] B. Liu, Y. Huang, Y. Wen, L. Du, W. Zeng, Y. Shi, F. Zhang, G. Zhu, X. Xu and Y. Wang: Journal of Materials Chemistry, Vol. 22 (2012) No. 15, p.7484.

Google Scholar

[49] A. Du, Y. H. Ng, N.J. Bell, Z. Zhu, R. Amal and S.C. Smith: Journal of Physical Chemistry Letters, Vol. 2 (2011) No. 8, p.894.

Google Scholar

[50] R. Long, N. J. English and O.V. Prezhdo: Journal of the American Chemical Society, Vol. 134 (2012) No. 34, p.14238.

Google Scholar

[51] T. Yamaki, T. Umebayashi, T. Sumita, S. Yamamoto, M. Maekawa, A. Kawasuso and H. Itoh: Nuclear Instruments and Methods in Physics Research Section B, Vol. 206 (2003) p.254.

DOI: 10.1016/s0168-583x(03)00735-3

Google Scholar