The Impact of the Power Plant Unit Start-Up Scheme on the Pollution Load

Article Preview

Abstract:

The typical problem in design of experiments methodology is to avoid risk of obtaining The article presents problems related to optimization of start-up and shut-down of the power unit located in a coal-based electric plant. The optimization includes minimization of the start-up and shut-down duration while maximum allowed stresses in the main steam valve are simultaneously taken into consideration. Such approach leads to increasing of overall efficiency of the power unit and as a result to reducing of environmental burden with the same amount of energy obtained.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

63-69

Citation:

Online since:

January 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Bednarczyk, Promising strategies for a technology utilizing an energetic brown coal under strong limitation of the carbon dioxide emission, R49 (2007) (5-6) 25-34.

Google Scholar

[2] J. Bednarczyk, Development scenarios for Legnica brown coal deposit., The technology for access to Legnica brown coal deposit, Redakcja Górnictwa Odkrywkowego, Wrocław (2007).

Google Scholar

[3] J.A. Maxson, Managing new mercury limits requires delicate balance, 12 (2001) 12-24.

Google Scholar

[4] B. Klojzy-Karczmarczyk, J. Mazurek, Soil contamination by mercury compounds in influence zone of coal-based power plant, 10 (2007) (2) 593-600.

Google Scholar

[5] J. Kwasniewski, I. Dominik, K. Lalik, Application of self-oscillating system for stress measurement in metal, J. Vibroeng. 14 (2012) (1) 61-66.

Google Scholar

[6] P. Osocha, P. Duda, B. Weglowski, Determining temperature and stress changes in thick-walled elements of steam lines, Inz Chem Procesowa 25 (2004) (4) 2249-2256.

Google Scholar

[7] B. Weglowski, P. Osocha, Modelling of Creep for Y Pipe from Ferritic-Martensitic P91 Steel, Rynek Energii (2009) (6) 140-145.

Google Scholar

[8] M. Pronobis, Modernization of power boilers, WNT, Warszawa 2002 (in Polish).

Google Scholar

[9] J. Szargut, A. Ziębik, Fundamentals of thermal energy, PWN, Warszawa 1998 (in Polish).

Google Scholar

[10] W. Wojnar, M. Pronobis, The Model of Flow and Temperature Distribution in the Superheater of a Power Boiler, Rynek Energii (2008) (6) 39-46.

Google Scholar

[11] H. Majchrzak, Influence analysis of the power unit startup and shutdown technology for the energy losses and startup costs, Ph.D. Thesis., Opole University of Technology, Opole (2001).

Google Scholar

[12] D. Kirmse, S. Lysk, A. Kather, G. Scheffknecht, Betriebserfahrungen mit den beiden 800 MW Dampferzeugern im Kraftwerk Schwarze Pumpe, 6 (2000) 29-38.

Google Scholar

[13] P. Duda, J. Taler, E. Roos, Inverse Method for Temperature and Stress Monitoring in Complex-Shape-Bodies, 3960 1-17., 3960 (2003) 1-17.

Google Scholar

[14] J. Taler, P. Duda, Solving Direct and Inverse Heat Conduction Problems, Springer, Berlin Heidelberg (2006).

DOI: 10.1007/978-3-540-33471-2

Google Scholar

[15] J. Taler, B. Węglowski, S. Grądziel, P. Duda, W. Zima, Monitoring of Thermal Stresses in Pressure Components of Large Steam Boilers, VGB Kraftwerk-sTechnik 1(2002), 73-78.

DOI: 10.1007/978-94-007-2739-7_396

Google Scholar

[16] TRD 301 Anlage 1: Technische Regeln für Dampfkessel: Berechnung auf Wechselbeanspruchung durch schwellenden Innendruck bzw. durch kombinierte Innendruck und Temperaturänderungen, Carl Heymans Verlag, Köln, und Beuth-Verlag, Berlin Ausgabe (1986).

DOI: 10.1002/cite.330500725

Google Scholar

[17] PN-EN 12952-3: 2004: Water tube boilers and auxiliary installations. Part 3: Design and calculation for pressure parts. (in Polish).

DOI: 10.3403/02574723

Google Scholar

[18] Bid documentation: Medium-pressure valves PN40 i PN100 – model SPK1 and SKS1. Second edition. No 021. 25. 2, Chemar, Kielce 2002 (in Polish).

Google Scholar

[19] Maintenance manual: Medium Pressure Valves PN40 and PN100 – model SPK1 and SKS1. Third edition. No 021. 94. 1, Chemar, Kielce 2001 (in Polish).

Google Scholar

[20] R. Dwornicka, The Calculation of Allowable Cooling and Heating Rates for a Gate Valve SKS1 Made from Steel 13 HMF WDG TRD., in: A.T. Bogorosz, A. Bubulis, R.I. Silin, V.P. Royzman and W.M. Sokol, (Eds. ), Modern Achievements in Science and Education, Khmelnitsky National University, Khmelnitsky (2008).

Google Scholar

[21] P. Duda, R. Dwornicka, Optimization of heating and cooling operations of steam gate valve, Struct Multidisc Optim 40 (2010) 529-535.

DOI: 10.1007/s00158-009-0370-8

Google Scholar

[22] J. Pietraszek, N. Radek, K. Bartkowiak, Advanced Statistical Refinement of Surface Layer's Discretization in the Case of Electro-Spark Deposited Carbide-Ceramic Coating Modified by a Laser Beam, Solid State Phenom. 197 (2013) 198-202.

DOI: 10.4028/www.scientific.net/ssp.197.198

Google Scholar

[23] J. Pietraszek, A. Gądek-Moszczak, The Smooth Bootstrap Approach to the Distribution of a Shape in the Ferritic Stainless Steel AISI 434L Powders, Solid State Phenom. 197 (2013) 162-167.

DOI: 10.4028/www.scientific.net/ssp.197.162

Google Scholar

[24] D.C. Montgomery, Design and Analysis of Experiments, John Wiley & Sons, Hoboken, (2008).

Google Scholar

[25] J. Pietraszek, Response surface methodology at irregular grids based on Voronoi scheme with neural network approximator, Adv. Soft Comput. 19 (2003) 250-255.

DOI: 10.1007/978-3-7908-1902-1_35

Google Scholar

[26] T. Styrylska, J. Pietraszek, Numerical modeling of non-steady-state temperature fields with supplementary data, Z. Angew. Math. Mech. 72 (1992) T537-T539.

Google Scholar