Influence of Ammonia Solution on Zinc Oxide Nanostructures by Hydrothermal Growth

Article Preview

Abstract:

In previous work, ZnO nanorods and nanoflowers were synthesized on indium-tin-oxide (ITO) substrates by hydrothermal growth at low temperature ,using the different concentrations of equimolar (1:1) zinc nitrate Zn (NO3)26H2O and methenamine (C6H12N4) mixed as precursors solution, and adding ammonia solution to control the pH levels. In this paper, for comparison, the same experiment without ammonia solution was also discussed. SEM, XRD were utilized to characterize morphologies and crystal structures of ZnO. It was indicated that the pH of precursor solution leads to the significantly changes in the nanostructured ZnO. Besides, a hierarchical structure of some of the micro/nanotubes was obtained .The possible growth mechanism is discussed in this work.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 875-877)

Pages:

1549-1553

Citation:

Online since:

February 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Huang, S. Mao, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo and P. Yang: Science Vol. 292 (2001), p.1897.

Google Scholar

[2] M. Yazawa, M. Koguchi, A. Muto, M. Ozawa and K. Hiruma: Appl. Phys. Lett. Vol. 61 (1992), p. (2051).

Google Scholar

[3] Y.C. Choi, W.S. Kim, Y.S. Park, S.M. Lee, D.J. Bae, Y.H. Lee, G. -S. Park, W.B. Choi, N.S. Lee and J.M. Kim: Adv. Mater. Vol. 12 (2000), p.746.

DOI: 10.1002/(sici)1521-4095(200005)12:10<746::aid-adma746>3.0.co;2-n

Google Scholar

[4] X.F. Duan and C.M. Lieber: Adv. Mater. Vol. 279 (2000), p.208.

Google Scholar

[5] M.H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo and P. Yang: Science Vol. 292 (2001), p.1897.

DOI: 10.1126/science.1060367

Google Scholar

[6] Z.W. Pan, Z.R. Dai and Z.L. Wang: Science Vol. 291 (2001), p. (1947).

Google Scholar

[7] Z.R. Tian, J.A. Voigt, J. Liu, B. McKenzie, M.J. McDermott, M.A. Rodriguez, H. Konishi and H. Xu: Nat. Mater. Vol. 2 (2003), p.821.

Google Scholar

[8] S.J. Henley, M.N.R. Ashfold, D.P. Nicholls, P. Wheatley and D.E. Cherns: Appl. Phys. A. Vol. 79 (2004), p.1169.

Google Scholar

[9] Y. Li, G.W. Meng, L.D. Zhang and F. Phillipp: Appl. Phys. Lett. Vol. 76 (2000), p. (2011).

Google Scholar

[10] J.J. Wu and S.C. Liu: Adv. Mater. Vol. 14 (2002), p.215.

Google Scholar

[11] Y. Sun, G.M. Fuge and M.N.R. Ashfold: Chem. Phys. Lett. Vol. 396 (2004), p.21.

Google Scholar

[12] S. Choopun, H. Tabata and T. Kawai: J. Cryst. Growth Vol. 274 (2005), p.167.

Google Scholar

[13] Y. Su, X.P. Zou, X.M. Meng, G.Q. Teng, G.Q. Yang and X.M. Lü: Advanced Materials Research Vols. 123-125 (2010) p.811.

Google Scholar

[14] Q. Ahsanulhaq, S.H. Kim, J.H. Kim, et al: Materials Research Bulletin. 43 (2008), p.3483.

Google Scholar

[15] J.F. Wu, M. Zhang, X.H. Xu: Journal of Wuhan University of Technology, China. 31 (2009), p.1.

Google Scholar

[16] T. Zhang, Y. Zeng, H.T. Fan, et al: J. Phys. D: Appl. Phys. 42 (2009), p.045103.

Google Scholar

[17] C.L. Jiang, W.Q. Zhang, G.F. Zou, et al: J. Phys. Chem. B. 109 (2005), p.1361.

Google Scholar

[18] J.B. Chu, S.M. Huang, D.W. Zhang, et al: Appl Phys A. 95 (2009), p.849.

Google Scholar

[19] Z. Wang, X.F. Qian, J. Yin, et al: Langmuir. 20 (2004), p.3441.

Google Scholar

[20] H.G. Yu, Z.P. Zhang, M.Y. Han, et al: J. AM. CHEM. SOC. 12 (2005), p.2378.

Google Scholar