Mo/γ-Al2O3-MgO as a Bifunctional Catalyst for Renewable Hydrogen Production from Steam Reforming of Glycerol

Article Preview

Abstract:

In this paper the catalytic steam reforming of glycerol to H2 has been evaluated in the presence of Mo/γ-Al2O3 and Mo/γ-Al2O3-MgO in a fixed-bed microreactor at 700 oC. Physiochemical properties of the Mo catalysts were explored by various analytical techniques such as N2 adsorption–desorption (BET), X-ray diffraction (XRD), X-ray fluorescence spectrum (XRF), Temperature-programmed reduction (TPR) and Transmission Electron Microscopy (TEM). Mo/γ-Al2O3-MgO catalysts show promising results with higher H2 concentration produced as compared to Mo/γ-Al2O3 catalysts. The Mo was found to be uniformly distributed on the surface of γ-Al2O3-MgO support and addition of MgO contents into γ-Al2O3 improves the dispersion of Mo on the surface of the support.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 875-877)

Pages:

1534-1538

Citation:

Online since:

February 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] B. C.R. Ewan, R.W.K. Allen. Int. J. Hydrogen Energy Vol. 30 (2005), pp.809-819.

Google Scholar

[2] Y. Cui, V. Galvita, L. Rihko-Struckmann, H. Lorenz, K. Sundmacher. Applied Catalysis B Vol. 90 (2009), pp.29-37.

DOI: 10.1016/j.apcatb.2009.02.006

Google Scholar

[3] V. Chiodo, S. Freni, A. Galvagno, N. Mondello, F. Frusteri. Applied Catalysis A Vol. 381 (2010), pp.1-7.

Google Scholar

[4] A. Mortreux, in: Industrial Applications of Heterogeneous Catalysis, 1st ed., D. Reidel Publishing Company (1988), pp.93-94.

Google Scholar

[5] J. Hagen, in: Industrial Catalysis: A practical Approach, 2nd ed., WILEY-VCH Verlag GmBh & Co KGaA (2006), 15-16.

Google Scholar

[6] S. Golay, L. K. Minsker, R. Deopper, and A. Renken, Chem. Eng. Sci. Vol. 54 (1999), pp.3593-3598.

Google Scholar

[7] L. P. R. Profeti, E. A. Ticianelli, and E. M. Assaf, Int. J. Hydrogen Energy Vol. 34 (2009), pp.5049-5060.

Google Scholar

[8] M. H. Youn, J. G. Seo, P. Kim, and I. K. Songa, J. Mol. Catal. A Vol. 261 (2007), p.276–281.

Google Scholar

[9] T. Borowiecki, W. Gac, and A. Denis, Appl. Catal. A Vol 270 (2004), p.27–36.

Google Scholar

[10] B. Scheffer, P. Molhoek, and J. A. Moulijn, Appl. Catal. Vol. 46 (1989), pp.11-30.

Google Scholar

[11] J. L. Brito, J. Laine. J. Catal. Vol. 139 (1993), pp.540-550.

Google Scholar

[12] M. A. D. Crespo, E. M. A. Estrada, A. M. T. Huertta, L. D. Garcia, and M. T. C. Paz, Mater. Charact. Vol. 58 (2007), pp.864-873.

Google Scholar

[13] M. Kumar, F. Aberuagb, J. K. Gupta , K. S. Rawat, L. D. Sharma, and G. M. Dhar, J. Mol. Catal. A Vol. 213 (2004), p.217–223.

Google Scholar

[14] S. Damyanova, A. Spojakkina, and K. Jiratova, Appl. Catal. A Vol. 125 (1995), pp.257-269.

Google Scholar

[15] S. Maluf, E.M. Assaf, Fuel Vol. 88 (2009), p.1547–1553.

Google Scholar

[16] X. Cai, Y. Cai, and W. Lin, Journal of Natural Gas Chemistry Vol. 17 (2008), pp.201-207.

Google Scholar

[17] C. Pophal, F. Kameda, K. Hoshino, S. Yoshinaka, and K. Segawa, Catal. Today Vol. 39 (1997), pp.21-32.

DOI: 10.1016/s0920-5861(97)00085-0

Google Scholar

[18] H. Wang, H. Guan, L. Duan , and Y. Xie, Catal. Commun. Vol. 7 (2006), p.802–806.

Google Scholar

[19] J. T. Richardson, B. Turk, M. V. Twigg. Applied Catalysis A Vol 148 (1996), pp.97-112.

Google Scholar