A Fuzzy-PI Control Technique Designed for Power Control of Wind Turbine Based on Induction Generator

Article Preview

Abstract:

In this paper, we develop the overall model of the wind energy conversion systems (WECS) structure based on induction generator (IG). The goal of this paper is to control the power generated by the WECS and transmitted to the grid. We propose a new control strategy based on fuzzy logic in order to control the power of the WECS. The main drawback is that the WECS is highly nonlinear. An adaptive Fuzzy-PI power controller is proposed to overcome this problem. A Simulation study is done to validate the strategy used in power control.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 875-877)

Pages:

1676-1682

Citation:

Online since:

February 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Mirecki : Etude comparative de chaînes de conversion d'énergie dédiées à une éolienne de petite puissance. Phd Thesis, National Polytechnic Institute of Toulouse, 5-April-(2005).

Google Scholar

[2] F. Poitiers : Etude et Commande de Génératrice Asynchrone pour L'utilisation de L'énergie Eolienne. Phd Thesis, University of Nantes, 19-december-(2003).

Google Scholar

[3] K. Amei, Y. Takayasu,  T. Ohji,  M. Sakui: A Maximum Power Control of Wind Generator System Using a Permanent Magnet Synchronous Generator and a Boost Chopper Circuit".  IEEE Conference on Power Conversion, PCC Osaka (2002).

DOI: 10.1109/pcc.2002.998186

Google Scholar

[4] A. Bouscayrol, Ph. Delarue, X. Guillaud: Power strategies for maximum control structure of a wind energy conversion system with a synchronous machine". Renewable Energy 30 (2005), p.2273–2288.

DOI: 10.1016/j.renene.2005.03.005

Google Scholar

[5] C. Mi, M. Filippa, J. Shen and N. Natarajan: Modeling and Control of Variable Speed Constant Frequency Synchronous Generator With brushless Exciter. IEEE Transactions on industry application, vol, 40, No, 2, pp.565-573, March/april (2004).

DOI: 10.1109/tia.2004.824504

Google Scholar

[6] G. A. Smith, K.A. Nigim, Wind-energy Recovery by a Static Scherbius Induction Generator,. Proc. IEE, 1981, 128, pp.317-324.

DOI: 10.1049/ip-c.1981.0051

Google Scholar

[7] H. Camblong: Minimisation de l'impact des perturbations d'origine éolienne dans la Génération d'électricité par des aérogénérateurs à vitesse variable. Phd Thesis, ENSAM Bordeaux, (2003).

Google Scholar

[8] L. Refoufi, B.A.T. Al Zahawi, A.G. Jack, Analysis and modelling of the steady state behavior of the static Kramer induction generator,. IEEE Transactions on Energy Conversion, Volume 14, Issue 3, 1999, pp.333-339.

DOI: 10.1109/60.790879

Google Scholar

[9] S. El Aimani, Modélisation de différentes technologies d'éoliennes intégrées dans un réseau de moyenne tension,. Phd Thesis, Ecole Centrale de Lille (ECL) jointly accredited with The University of Science and Technology of Lille 1 (USTL), 06 december (2004).

Google Scholar

[10] N. Cirstea, A. Dinu, J.G. Khor,M. McCormick: Neural and Fuzzy Logic Control of Drives and Power Systems (Newnes, Oxford, 2002).

DOI: 10.1016/b978-075065558-3/50006-4

Google Scholar

[11] BIMAL K. BOSE, Expert System, Fuzzy logic, and neural network Applications in power Electronics and motion control, Proceedings of the IEEE, Vol. 82, NO. 8 August 1994, 1303-1321.

DOI: 10.1109/5.301690

Google Scholar

[12] Jeffrey T. Spooner, Manfredi Maggiore, Raul Ordonez, Kevin M. Passino:  Stable adaptative control and estimation for nonlinear system, Neural and fuzzy approximator techniques (Willey-Interscience, 2002).

DOI: 10.1002/rnc.956

Google Scholar