[1]
B.H. Lee, H.S. Kim, S. Lee, H.J. Kim and J.R. Dorgan, Biocomposites of Kenaf Fibers in Polylactide: Role of Improved Interfacial Adhesion in the Carding Process, Composites Science and Technology, (2009).
DOI: 10.1016/j.compscitech.2009.07.015
Google Scholar
[2]
M.S. Huda, L.T. Drzal, A.K. Mohanty and M. Misra, Effect of fiber surface treatments on the properties of laminated biocomposites from poly(lactic acid) (PLA) and kenaf fibers, Composites Science and Technology, vol. 68 (2008) p.424.
DOI: 10.1016/j.compscitech.2007.06.022
Google Scholar
[3]
T. Ohkita and S.H. Lee, Thermal degradation and biodegradability of poly (lactic acid)/corn starch biocomposites, J. Appl Polym Sci, vol. 100 (2006) p.3009.
DOI: 10.1002/app.23425
Google Scholar
[4]
M.J. Johna and S. Thomas Biofibres and biocomposites: An overview, Carbohydrate Polymer, vol. 71(2008) p.343.
Google Scholar
[5]
N. Graupner, A.S. Herrmann and J. Mussig, Natural and amn-made cellulose fibre-reinforced poly(lactic acid) (PLA) composites: An overview about mechanical characteristics and application areas, Composites, vol. 40 (2009) p.810.
DOI: 10.1016/j.compositesa.2009.04.003
Google Scholar
[6]
B. Bax and J. Mussig, Impact and tensile properties of PLA/Cordenka and PLA/flax composites, Composites Science and Technology, vol. 68 (2008) p.1601.
DOI: 10.1016/j.compscitech.2008.01.004
Google Scholar
[7]
S. R Suprakas, M. Pralay, O. Masami, Y. Kazunobu, U. Kazue, New polylactide/layered silicate nanocomposites. Preparation, characterization and properties, Macromolecules, vol. 35 (2002) p.3104.
DOI: 10.1021/ma011613e
Google Scholar
[8]
A.M. Harris and E.C. Lee, Injection Molded Polylactide (PLA) Composites for Automotive Applications, SPE ACCE Paper Draft 062906. doc (2006).
Google Scholar
[9]
T. Yu, J. Ren, S. Li, H. Yuan and Y. Li, Effect of fiber surface-treatments on the properties of poly(lactic acid)/ramie composites, Composites Part A, vol. 41 (2010) p.499.
DOI: 10.1016/j.compositesa.2009.12.006
Google Scholar
[10]
M.S. Huda, A.K. Mohanty, L.T. Drzal and M. Misra, Physico-mechanical Properties of 'Green' Composites from Polylactic Acid (PLA) and Cellulose Fibers, GPEC Paper Abstract, vol. 11 (2004).
Google Scholar
[11]
M.S. Huda, L.T. Drzal and M. Misra, A study on biocomposites from recycled newspaper fiber and poly(lactic acid) (PLA) and kenaf fibers, Ind Eng Chem Res, vol. 44 (2005) p.5593.
DOI: 10.1021/ie0488849
Google Scholar
[12]
S.S. Suradi, R.M. Yunus, M.D.H. Beg, M. Rivai and Z.A.M. Yusof, Oil Palm Bio-Fiber Reinforced Thermoplastic Composites-Effects of Matrix Modification on Mechanical and Thermal Properties, Journal of Applied Science, vol. 10 (2010) pp.3271-3276.
DOI: 10.3923/jas.2010.3271.3276
Google Scholar
[13]
M.M. Haque, M. Hasan, M.S. Islam and M.E. Ali, Physico-mechanical properties of chemically treated palm and coir fiber reinforced polypropylene composites, Bioresource Technology, vol. 100 (2009) p.4903.
DOI: 10.1016/j.biortech.2009.04.072
Google Scholar
[14]
K. Hassan, M. Husin, A. Darus and J. Sukaimi, An Estimated Availability of Oil Palm Biomass in Malaysia, PORIM: Occasional Paper, 37 (1997).
Google Scholar
[15]
K. Oksman, M. Skrifvars and J.F. Selin, Natural fibres as reinforcement in polylactic acid (PLA) composites, Composites Science Technology, vol. 63 (2003) p.1324.
DOI: 10.1016/s0266-3538(03)00103-9
Google Scholar
[16]
H.S. Yang, H.J. Kim, H.J. Park, B.J. Lee and T.S. Hwang, Effect of compatibilizing agents on rice-husk flour reinforced polypropylene composites, Composites Structure, vol. 77 (2007) p.45.
DOI: 10.1016/j.compstruct.2005.06.005
Google Scholar
[17]
S.Y. Zhang, Y. Zhang, M. Bousmina, M. Sain and P. Choi, Effects of raw fiber materials, fiber content and coupling agent content on selected properties of polyethylene/wood fiber composites, Polymer Engineering Science, vol. 47 (2007) p.1678.
DOI: 10.1002/pen.20854
Google Scholar
[18]
S. Serizawa, K. Inoue and M. Iji, Kenaf-fiber-reinforced poly(lactic acid) used for electronic products, Journal Applied Polymer Science, vol. 100 (2006) p.618.
DOI: 10.1002/app.23377
Google Scholar
[19]
H. Hatakeyema, N. Tanamachi, H. Matsumura, S. Hirose and T. Hatakeyama, Bio-based polyurethane composite foams with inorganic fillers studied by thermogravimetry, Thermochim Acta, vol. 431 (2005) p.155.
DOI: 10.1016/j.tca.2005.01.065
Google Scholar
[20]
M. F. Rosa, B. Chiou, E.S. Medeiros, D.F. Wood, T.G. Williams, L. H. C. Mattoso, W. J. Orts and S. H. Imam, Effect of fiber treatments on tensile and thermal properties of starch/ethylene vinyl alcohol copolymers/coir biocomposites, Bioresource Technology, vol. 100 (2009).
DOI: 10.1016/j.biortech.2009.03.085
Google Scholar
[21]
L. Liu, J. Yu, L. Cheng and W. Qu, Mechanical properties of poly (butylenes succinate) (PBS) biocomposites reinforced with surface modified jute fibre, Composites: Part A, vol. 40 (2009) p.669.
DOI: 10.1016/j.compositesa.2009.03.002
Google Scholar
[22]
M.J. John, B. Francis, K.T. Varughese and S. Thomas, Effect of chemical modification on properties of hybrid fiber biocomposites, Composites: Part A, vol. 39 (2007) p.352.
DOI: 10.1016/j.compositesa.2007.10.002
Google Scholar
[23]
R.G. Liao, B. Yang, W. Yu and C.X. Zhoy, Isothermal cold crystallization kinetics of polylactide/nucleating agents, CJournal Applied Polymer Science, vol. 104(1) (2007) p.310.
DOI: 10.1002/app.25733
Google Scholar
[24]
S. Singh, A.K. Mohanty, T. Sugie, Y. Takai and H. Hamada, Renewable resource based biocomposites from natural fiber and polyhydroxybutyrate-co-valerate (PHBV) bioplastic, Composites: Part A, vol. 39 (2008) p.875.
DOI: 10.1016/j.compositesa.2008.01.004
Google Scholar
[25]
P. Kamdem, H.C. Jiang, J.W. Freed and M.L. Matuana, Properties of wood plastic composites made of recycled HDPE and wood flour from CCA-treated wood removed from service, Composites: Part A, vol. 35 (2004) p.347.
DOI: 10.1016/j.compositesa.2003.09.013
Google Scholar