Effect of Fiber Surface Treatment on Mechanical Properties of Polylactic Acid/Empty Fruit Bunch Fiber Biocomposites

Article Preview

Abstract:

Renewable resourced green biocomposites are currently receiving much attention due to their environmental advantages. Therefore, the aim of this research is study the effect of fiber surface treatment on the mechanical properties of polylactic acid (PLA) biocomposite in order to produce a green biocomposite. Experiments were conducted by surface treatment of empty fruit bunch fiber using two methods, sodium hydroxide and silane. Both treated and untreated fibers were then melt compounded with PLA and mechanical properties of the biocomposite was studied. The results showed that silane treatment improved the reinforced biocomposite mechanical properties such as tensile strength by 33% and flexural modulus by 44% compared with untreated fiber reinforced biocomposites. This is due to the silane functional groups that act as a bridge between the PLA and fiber.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 875-877)

Pages:

171-176

Citation:

Online since:

February 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] B.H. Lee, H.S. Kim, S. Lee, H.J. Kim and J.R. Dorgan, Biocomposites of Kenaf Fibers in Polylactide: Role of Improved Interfacial Adhesion in the Carding Process, Composites Science and Technology, (2009).

DOI: 10.1016/j.compscitech.2009.07.015

Google Scholar

[2] M.S. Huda, L.T. Drzal, A.K. Mohanty and M. Misra, Effect of fiber surface treatments on the properties of laminated biocomposites from poly(lactic acid) (PLA) and kenaf fibers, Composites Science and Technology, vol. 68 (2008) p.424.

DOI: 10.1016/j.compscitech.2007.06.022

Google Scholar

[3] T. Ohkita and S.H. Lee, Thermal degradation and biodegradability of poly (lactic acid)/corn starch biocomposites, J. Appl Polym Sci, vol. 100 (2006) p.3009.

DOI: 10.1002/app.23425

Google Scholar

[4] M.J. Johna and S. Thomas Biofibres and biocomposites: An overview, Carbohydrate Polymer, vol. 71(2008) p.343.

Google Scholar

[5] N. Graupner, A.S. Herrmann and J. Mussig, Natural and amn-made cellulose fibre-reinforced poly(lactic acid) (PLA) composites: An overview about mechanical characteristics and application areas, Composites, vol. 40 (2009) p.810.

DOI: 10.1016/j.compositesa.2009.04.003

Google Scholar

[6] B. Bax and J. Mussig, Impact and tensile properties of PLA/Cordenka and PLA/flax composites, Composites Science and Technology, vol. 68 (2008) p.1601.

DOI: 10.1016/j.compscitech.2008.01.004

Google Scholar

[7] S. R Suprakas, M. Pralay, O. Masami, Y. Kazunobu, U. Kazue, New polylactide/layered silicate nanocomposites. Preparation, characterization and properties, Macromolecules, vol. 35 (2002) p.3104.

DOI: 10.1021/ma011613e

Google Scholar

[8] A.M. Harris and E.C. Lee, Injection Molded Polylactide (PLA) Composites for Automotive Applications, SPE ACCE Paper Draft 062906. doc (2006).

Google Scholar

[9] T. Yu, J. Ren, S. Li, H. Yuan and Y. Li, Effect of fiber surface-treatments on the properties of poly(lactic acid)/ramie composites, Composites Part A, vol. 41 (2010) p.499.

DOI: 10.1016/j.compositesa.2009.12.006

Google Scholar

[10] M.S. Huda, A.K. Mohanty, L.T. Drzal and M. Misra, Physico-mechanical Properties of 'Green' Composites from Polylactic Acid (PLA) and Cellulose Fibers, GPEC Paper Abstract, vol. 11 (2004).

Google Scholar

[11] M.S. Huda, L.T. Drzal and M. Misra, A study on biocomposites from recycled newspaper fiber and poly(lactic acid) (PLA) and kenaf fibers, Ind Eng Chem Res, vol. 44 (2005) p.5593.

DOI: 10.1021/ie0488849

Google Scholar

[12] S.S. Suradi, R.M. Yunus, M.D.H. Beg, M. Rivai and Z.A.M. Yusof, Oil Palm Bio-Fiber Reinforced Thermoplastic Composites-Effects of Matrix Modification on Mechanical and Thermal Properties, Journal of Applied Science, vol. 10 (2010) pp.3271-3276.

DOI: 10.3923/jas.2010.3271.3276

Google Scholar

[13] M.M. Haque, M. Hasan, M.S. Islam and M.E. Ali, Physico-mechanical properties of chemically treated palm and coir fiber reinforced polypropylene composites, Bioresource Technology, vol. 100 (2009) p.4903.

DOI: 10.1016/j.biortech.2009.04.072

Google Scholar

[14] K. Hassan, M. Husin, A. Darus and J. Sukaimi, An Estimated Availability of Oil Palm Biomass in Malaysia, PORIM: Occasional Paper, 37 (1997).

Google Scholar

[15] K. Oksman, M. Skrifvars and J.F. Selin, Natural fibres as reinforcement in polylactic acid (PLA) composites, Composites Science Technology, vol. 63 (2003) p.1324.

DOI: 10.1016/s0266-3538(03)00103-9

Google Scholar

[16] H.S. Yang, H.J. Kim, H.J. Park, B.J. Lee and T.S. Hwang, Effect of compatibilizing agents on rice-husk flour reinforced polypropylene composites, Composites Structure, vol. 77 (2007) p.45.

DOI: 10.1016/j.compstruct.2005.06.005

Google Scholar

[17] S.Y. Zhang, Y. Zhang, M. Bousmina, M. Sain and P. Choi, Effects of raw fiber materials, fiber content and coupling agent content on selected properties of polyethylene/wood fiber composites, Polymer Engineering Science, vol. 47 (2007) p.1678.

DOI: 10.1002/pen.20854

Google Scholar

[18] S. Serizawa, K. Inoue and M. Iji, Kenaf-fiber-reinforced poly(lactic acid) used for electronic products, Journal Applied Polymer Science, vol. 100 (2006) p.618.

DOI: 10.1002/app.23377

Google Scholar

[19] H. Hatakeyema, N. Tanamachi, H. Matsumura, S. Hirose and T. Hatakeyama, Bio-based polyurethane composite foams with inorganic fillers studied by thermogravimetry, Thermochim Acta, vol. 431 (2005) p.155.

DOI: 10.1016/j.tca.2005.01.065

Google Scholar

[20] M. F. Rosa, B. Chiou, E.S. Medeiros, D.F. Wood, T.G. Williams, L. H. C. Mattoso, W. J. Orts and S. H. Imam, Effect of fiber treatments on tensile and thermal properties of starch/ethylene vinyl alcohol copolymers/coir biocomposites, Bioresource Technology, vol. 100 (2009).

DOI: 10.1016/j.biortech.2009.03.085

Google Scholar

[21] L. Liu, J. Yu, L. Cheng and W. Qu, Mechanical properties of poly (butylenes succinate) (PBS) biocomposites reinforced with surface modified jute fibre, Composites: Part A, vol. 40 (2009) p.669.

DOI: 10.1016/j.compositesa.2009.03.002

Google Scholar

[22] M.J. John, B. Francis, K.T. Varughese and S. Thomas, Effect of chemical modification on properties of hybrid fiber biocomposites, Composites: Part A, vol. 39 (2007) p.352.

DOI: 10.1016/j.compositesa.2007.10.002

Google Scholar

[23] R.G. Liao, B. Yang, W. Yu and C.X. Zhoy, Isothermal cold crystallization kinetics of polylactide/nucleating agents, CJournal Applied Polymer Science, vol. 104(1) (2007) p.310.

DOI: 10.1002/app.25733

Google Scholar

[24] S. Singh, A.K. Mohanty, T. Sugie, Y. Takai and H. Hamada, Renewable resource based biocomposites from natural fiber and polyhydroxybutyrate-co-valerate (PHBV) bioplastic, Composites: Part A, vol. 39 (2008) p.875.

DOI: 10.1016/j.compositesa.2008.01.004

Google Scholar

[25] P. Kamdem, H.C. Jiang, J.W. Freed and M.L. Matuana, Properties of wood plastic composites made of recycled HDPE and wood flour from CCA-treated wood removed from service, Composites: Part A, vol. 35 (2004) p.347.

DOI: 10.1016/j.compositesa.2003.09.013

Google Scholar