Cu-Fe/TiO2 Photocatalyst for Deep Desulfurization Process

Article Preview

Abstract:

A series of Cu-Fe/TiO2 photocatalysts were prepared and calcined at 400°C and 500°C for 1 h. The photocatalysts were characterized using diffuse reflectance spectroscopy (DR-UV-Vis), X-ray diffraction (XRD) and field-emission scanning electron microscopy (FESEM). The performance for sulfur removal was carried out using model oil containing 100 ppm S (from dibenzothiophene). The highly dispersed Cu-Fe/TiO2 photocatalyst displayed mainly spherical shaped particles. The best performing photocatalyst was 0.8wt% Cu-Fe loading and calcined at 400°C (0.8wt400) giving 18% sulfur removal. The band gap for 0.8wt400 was lowered to 2.96 eV compared to 3.21 eV for TiO2.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 875-877)

Pages:

34-38

Citation:

Online since:

February 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] EPA: EPA Gives the Light Green Light on Diesel Sulfur Rule, Press Release, United States Environmental Protection Agency (2011, February 28).

Google Scholar

[2] J. Campos-Martin, M. Capel-Sanchez, P. Perez-Presas and J. Fierro: J. Chem. Technol. Biotechnol. Vol. 85 (2010), p.879.

DOI: 10.1002/jctb.2371

Google Scholar

[3] Z. Jiang, H. Lu, Y. Zhang and C. Li: Chinese Journal of Catalysis Vol. 32, No. 5 (2011), p.707.

Google Scholar

[4] Y. Zhao, L. Zhao, J. Han, Y. Xu and S. Wang: Science in China Series E: Technological Sciences Vol. 51, No. 3 (2008), p.268.

Google Scholar

[5] A.L. Linsebigler, G.Q. Lu, J.T. Yates : Chem. Rev. Vol. 95 (1995), p.735.

Google Scholar

[6] S. Afshar, S.H. Jahromi, N. Jafari, Z. Ahmadi, M. Hakamizadeh: Scientia Iranica Vol. 18, No. 3 (2011), p.772.

DOI: 10.1016/j.scient.2011.06.007

Google Scholar

[7] Z. Jin, X. Zhang, Y. Li, S. Li and G. Lu: Catalysis Communications Vol. 8, No. 8 (2007), p.1267.

Google Scholar

[8] L. Huang, F. Peng, H. Wang, H. Yu and Z. Li: Catalysis Communications Vol. 10, No. 14 (2009), p.1839.

Google Scholar

[9] H. Liu, H.K. Shon, X. Sun, S. Vigneswaran and H. Nan: Applied Surface Science Vol. 257 (2011), p.5813.

Google Scholar

[10] A. Kezzim, N. Nasrallah, A. Abdi, M. Trari: Energy Conversion and Management Vol. 52, No. (8–9) (2011), p.2800.

DOI: 10.1016/j.enconman.2011.02.014

Google Scholar

[11] D. Zhang: Transition Metal Chemistry Vol. 35, No. 8 (2010), p.933.

Google Scholar

[12] A.A. Abdel-Wahab and A.E.M. Gaber: Journal of Photochemistry and Photobiology A: Chemistry Vol. 114, No. 3 (1998), p.213.

Google Scholar

[13] S. Matsuzawa, J. Tanaka, S. Sato and T. Ibusuki: Journal of Photochemistry and Photobiology A: Chemistry Vol. 149, No. (1–3) (2002), p.183.

Google Scholar

[14] H. Tao, T. Nakazato and S. Sato: Fuel Vol. 88, No. 10 (2009), p. (1961).

Google Scholar

[15] K. Akihiko, N. Ryo, I. Akihide, K. Hideki: Chemical Physics Vol. 339 (2007), p.104.

Google Scholar

[16] S.Y. Leong, F. K. Chong and B.K. Dutta: Energy Vol. 3, No. 10 (2009), p.1652.

Google Scholar