Preparation and Characterization of Nitrogen Doped TiO2 Nanoparticles as an Effective Catalyst in Photodegradation of Phenol under Visible Light

Article Preview

Abstract:

Nitrogen-doped TiO2 nanoparticles of commercial Degussa P25 have been prepared via a direct impregnation reaction using ammonium hydroxide solution as nitrogen source. The Samples were characterized by X-ray diffraction (XRD), BET surface area BJH pore charecterization and scanning electron microscopy (SEM) equipped with energy dispersive X-ray spectroscopy (EDX). The results demonstrated that the nitrogen-doped TiO2 nanoparticles had a crystallite size 70.8 nm and a specific surface area of 6.4 m2/g with average pore diameter of 23.3 nm consisting mainly of titanium and oxygen. The photocatalyst activity was determined by degradation of phenol in an impinging stream reactor under visible light irradiation (λ> 400 nm). N-TiO2 catalyst exhibited higher photocatalytic activity in comparison with Degussa P25 under visible light irradiation.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 875-877)

Pages:

28-33

Citation:

Online since:

February 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y. Chen and D.D. Dionysiou: Appl. Catal. B: Environ. 62 (2006) 255–264.

Google Scholar

[2] H.Y. Yang, S.K. Zhu and N. Pan: Appl. Polym. Sci. 92 (2004) 3201.

Google Scholar

[3] S. Chainarong, L. Sikong and S. Pavasupree: Energy Procedia 9 (2011) 418–427.

Google Scholar

[4] F. Peng, L. Cai, L. Huang, H. Yu and H. Wang: J. Phys. Chem. Sol. 69 (2008) 1657–1664.

Google Scholar

[5] M. Anpo and M. Takeuchi: J. Catal. 216 (2003) 505.

Google Scholar

[6] S. Sato: Chem Phys Lett 123 (1986) 126–128.

Google Scholar

[7] R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki and Y. Taga: Science 293 (2001) 269.

Google Scholar

[8] T. Imao, T. Horiuchi, N. Noma and S. Ito: J. Sol–Gel Sci. Technol. 39 (2006) 119.

Google Scholar

[9] N. Venkatachalam, A. Vinu, S. Anandan, B. Arabindoo and V. Murugesan: J. Nanosci. Nanotechnol. 6 (2006) 2499.

Google Scholar

[10] Y. Cong, L. Xiao, J. Zhang, F. Chen and M. Anpo: Res. Chem. Intermed. 32(2006) 717-724.

Google Scholar

[11] A. Orlov, M.S. Tikhov and R.M. Lambert: C. R. Chim. 9 (2006) 794.

Google Scholar

[12] O. Diwald, T.L. Thompson, E.G. Goralski and S.D. Walck: J. Phys. Chem. B 108 (2004) 52.

Google Scholar

[13] S.Z. Chen, P.Y. Zhang, D.M. Zhuang and W.P. Zhu: Catal. Commun. 5 (2004) 677.

Google Scholar

[14] O. Diwald, T.L. Thompson, T. Zubkov, E.G. Goralski, S.D. Walck and J.T. Yates: J. Phys. Chem. B 108 (2004) 6004.

Google Scholar

[15] R. Rattanakam and S. Supothina: Res. Chem. Intermed 35(2009); 263-269.

Google Scholar

[16] K.C. Song and S.E. Pratsinis: J. Colloid. Interface Sci. 2319 (2000) 289.

Google Scholar

[17] M. Sathish, B. Viswanathan and R.P. Viswanath: Chem. Mater. 17 (2005) 6349.

Google Scholar

[18] J. Yuan, M.X. Chen, J.W. Shi and W.F. Shangguan: Int. J. Hydrogen Energy 31 (2006) 1326.

Google Scholar

[19] H.X. Li, J.X. Li and Y.N. Huo: J. Phys. Chem. B 110 (2006) 1559.

Google Scholar

[20] P.S. Yap and T. T Lim: Appl. Catal. B: Environ. 101 (2011) 709–717.

Google Scholar