Interference Colors of TiO2 Nanotube Arrays Grown by Anodic Oxidation

Article Preview

Abstract:

The study describes the interference color of anodic TiO2 nanotube arrays on titanium foil. TiO2 nanotube arrays are prepared by oxidizing titanium foil in an aqueous electrolyte solution of hydrofluoric acid (HF, 0.5 wt.%). The morphologies of the oxide film are characterized by FESEM. The empirical color properties are obtained using the L*a*b* system. The different interference colors of oxidized Ti samples are obtained depending on the anodization time. The anodization time clearly indicates a strong effect on the reflectance at the visible wavelength region, thus confirming the observed color differences. Consequently, the interference colors can be controlled by the anodization time. By observing the coloration of Ti during the anodization, the interference colors can be utilized to identify the thickness of oxide layer and the formation of nanotubes on Ti sheet.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 875-877)

Pages:

370-374

Citation:

Online since:

February 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C.A. Grimes: J. Mater. Chem. Vol. 17 (2007) p.1451.

Google Scholar

[2] D. Gong, C.A. Grimes, O. K. Varghese, W. Hu, R.S. Singh, Z. Chen and E. C. Dickey: J. Mater. Res. Vol. 16 (2001) p.3331.

Google Scholar

[3] H. Tsuchiya, J. M. Macak, L. Taveira, E. Balaur, A. Ghicov, K. Sirotna and P. Schmuki: Electrochem. Commun. Vol. 7 (2005) p.576.

DOI: 10.1016/j.elecom.2005.04.008

Google Scholar

[4] V.M. Prida, E. Manova, V. Vega, M. Hernandez-Velez, P. Aranda, K.R. Pirota, M. Vázquez and E. Ruiz-Hitzky: J. Magn. Magn. Mater. (2007) p.110.

DOI: 10.1016/j.jmmm.2007.02.021

Google Scholar

[5] Z. Lockman, S. Sreekantan, S. Ismail, L. Schmidt-Mende and J. L. MacManus-Driscoll: J. Alloys Compd. Vol. 503 (2010) p.359.

DOI: 10.1016/j.jallcom.2009.12.093

Google Scholar

[6] K. Yasuda, J. M. Macak, S. Berger, A. Ghicov, and P. Schmuki: J. Electrochem. Soc. Vol. 154 (2007) p. C472.

DOI: 10.1149/1.2749091

Google Scholar

[7] G. Jerkiewicz, B. Zhao, S. Hrapovic, and B.L. Luan: Chem. Mater Vol. 20 (2008) p.1877.

Google Scholar

[8] Y.T. Sul, C. B. Johansson, Y. Jeong and T. Albrektsson: Med. Eng. Phys. Vol. 23 (2001) p.329.

Google Scholar

[9] S. V. Gils, P. Mast, E. Stijnsand H. Terryn: Surf. Coat. Technol. Vol. 185 (2004) p.303.

Google Scholar

[10] G.K. Mor, O. K. Varghese, M. Paulose, N. Mukherjee and C. A. Grimes: J. Mater. Res. (2003) p.2588.

Google Scholar

[11] A. Nakajima, A. Fujishima, K. Hashimoto and T. Watanabe: Adv. Mater. (1999) p.1365.

Google Scholar

[12] L. Gao, W. Ren, F. Li, And H. M. Cheng: ACS Nano Vol. 2 (2008) p.1625.

Google Scholar