Sonic Wave Band Gaps in Two-Dimensional Phononic Crystals Consisting of Hollow Mercury Columns Immersed in a Water Host, and Arranged in Simple Lattices

Article Preview

Abstract:

In this paper, band gaps for two-dimensional phononic crystals consisting of hollow square water columns immersed in a mercury host are investigated by plane-wave-expansion (PWE) method, in which cross sections of the scattering objects are hollow-square and hollow water columns are arranged in simple lattices (square, and triangular lattices). In order to regulate band gaps, we alter inner side lengths of hollow-square column, and change the filling ratio at the same time. From the results, It can be found that the band gap width and the number of the bad gaps can be changed by lattice shapes and corresponding filling fraction. This could be very useful in the design of phononic crystals band gaps and frequency filtering.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 875-877)

Pages:

512-517

Citation:

Online since:

February 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Benchabane, O. Gaiffe, G. Ulliac, R. Salut, Y. Achaoui, and V. Laude, Appl. Phys. Lett. 98 (2011), P. 171908.

DOI: 10.1063/1.3583982

Google Scholar

[2] M. Oudich, M. B. Assouar, and Z. Hou, Appl. Phys. Lett. 97(2010), P. 193503.

Google Scholar

[3] Y. Cheng, X. J. Liu, and D. J. Wu, J. Appl. Phys. 109 (2011), P. 064904.

Google Scholar

[4] D. Bria, M. B. Assouar, M. Oudich, Y. Pennec, J. Vasseur, and B. Djafari-Rouhani, J. Appl. Phys. 109 (2011), P. 014507.

DOI: 10.1063/1.3530682

Google Scholar

[5] C. Croënne, E. D. Manga, B. Morvan, A. Tinel, B. Dubus, J. Vasseur, and A. -C. Hladky-Hennion, Phys. Rev. B 83 (2011), P. 054301.

DOI: 10.1103/physrevb.83.054301

Google Scholar

[6] Sz-Chin Steven Lin and Tony Jun Huang, Phys. Rev. B. 83(2011), P. 174303.

Google Scholar

[7] J.O. Vasseurt, B. Djafari-Rouhanit, L. Dobrzynskit, M.S. Kushwahd and P. Halevit, Phys. Condens. Matter 6 (1994), P. 8759.

Google Scholar

[8] M. M. Sigalas, and E. N. Economou, J. Sound Vib 158 (1992), P. 377.

Google Scholar

[9] M. S. Kushwaha, P. Halevi, L. Dobrzynski, and B. Diafari-Rouhani, Phys. Rev. Lett 71 (1993), P. (2022).

Google Scholar

[10] M. S. Kushwaha and P, Halevi, Appl. Phys. Lett. 69 (1996), P. 31.

Google Scholar

[11] J. O. Vasseur, B. D-Rouhani, L. Dobrzynski, and P. A. Deymier, J. Phys: Condens. Matter 9 (1997), P. 7327.

Google Scholar

[12] F. G. Wu, Z. Y. Liu, and Y. Y. Liu, J. Phys. D: Appl. Phys. 35 (2002), P. 162.

Google Scholar