Identification Scheme to Assess the Role of Interfacial Damage in a Hemp-Starch Biocomposite

Article Preview

Abstract:

This paper aims at studying the effect of interfacial damage on the mechanical behavior of starch - hemp composite. The procedure encompasses an experimental investigation towards the determination of microstructural features and mechanical testing of the material. A finite element model is developed to account for a particular damage kinetics that triggers failure properties. Our results show that the experimental evidence of interfacial damage driven failure is achieved. Finite element model is able to capture this feature using an abrupt damage criterion. But in order to identify the observed behavior, the experimental response is matched with the numerical one. This process tunes the mechanical parameters to fit the experimental response. The optimization process conducted in this way leads to a precise determination of the mechanical parameters that quantifies the observed ultimate properties.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 875-877)

Pages:

524-528

Citation:

Online since:

February 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D. Saheb, J. Jog: Natural fiber polymer composites: A review, Advances in Polymer Technology, Vol. 18 (1999), p.351.

DOI: 10.1002/(sici)1098-2329(199924)18:4<351::aid-adv6>3.0.co;2-x

Google Scholar

[2] A.S. Herrmann, J. Nickel, U. Riedel: Construction materials based upon biologically renewable resources - from components to finished parts, Polymer Degradation and Stability, Vol. 59 (1998), p.251.

DOI: 10.1016/s0141-3910(97)00169-9

Google Scholar

[3] F. Vilaseca, A. Lopez, X. Llauro, M.A. Pelach, P. Mutje: Hemp strands as reinforcement of polystyrene composites, Chemical Engineering Research & Design, Vol. 82 (2004), p.1425.

DOI: 10.1205/cerd.82.11.1425.52038

Google Scholar

[4] A. Keller: Compounding and mechanical properties of biodegradable hemp fibre composites, Composites Science and Technology, Vol. 63 (2003), p.1307.

DOI: 10.1016/s0266-3538(03)00102-7

Google Scholar

[5] K.L. Pickering, G.W. Beckermann, S.N. Alam, N.J. Foreman: Optimising industrial hemp fibre for composites, Composites Part a-Applied Science and Manufacturing, Vol. 38 (2007), p.461.

DOI: 10.1016/j.compositesa.2006.02.020

Google Scholar

[6] D. Roulson, M. Sain, M. Couturier: Resin transfer molding of hemp fiber composites: optimization of the process and mechanical properties of the materials, Composites Science and Technology, Vol. 66 (2006), p.895.

DOI: 10.1016/j.compscitech.2005.07.040

Google Scholar

[7] Y. Li, K.L. Pickering: Hemp fibre reinforced composites using chelator and enzyme treatments, Composites Science and Technology, Vol. 68 (2008), p.3293.

DOI: 10.1016/j.compscitech.2008.08.022

Google Scholar

[8] H.Y. Cheung, M.P. Ho, K.T. Lau, F. Cardona, D. Hui: Natural fibre-reinforced composites for bioengineering and environmental engineering applications, Composites Part B-Engineering, Vol. 40 (2009), p.655.

DOI: 10.1016/j.compositesb.2009.04.014

Google Scholar

[9] M. Pracella, D. Chionna, I. Anguillesi, Z. Kulinski, E. Piorkowska: Functionalization, compatibilization and properties of polypropylene composites with Hemp fibres, Composites Science and Technology, Vol. 66 (2006), p.2218.

DOI: 10.1016/j.compscitech.2005.12.006

Google Scholar

[10] S. Guessasma, D. Bassir, Identification of mechanical properties of biopolymer composites sensitive to interface effect using hybrid approach, Mechanics of Materials, Vol. 42 (2010), p.344.

DOI: 10.1016/j.mechmat.2009.12.001

Google Scholar

[11] S. Guessasma, D. Bassir, Comparing heuristic and deterministic approaches to optimise mechanical parameters of biopolymer composite materials, Mechanics of Advanced Materials and Structures, Vol. 16 (2009), p.293.

DOI: 10.1080/15376490902800785

Google Scholar

[12] S. Guessasma, Multiscale modelling and optimization strategies for better understanding of biopolymer mechanical properties : review of recent contributions, Int. J. Simul. Multidisci. Des. Optim. Vol. 3 (2009), p.419.

DOI: 10.1051/ijsmdo/2009018

Google Scholar

[13] S. Rjafiallah, S. Guessasma: Three-phase model and digital image correlation to assess the interphase effect on the elasticity of carbohdyrate polymer-based composites reinforced with glass silica beads, Carbohydrate Polymers, Vol. 83 (2011).

DOI: 10.1016/j.carbpol.2010.07.055

Google Scholar

[14] L. Benabou, N. Benseddiq, M. Nait-Abdelaziz: Comparative analysis of damage at interfaces of composites, Composites: Part B, Vol. 33 (2002), p.215.

DOI: 10.1016/s1359-8368(02)00004-5

Google Scholar