[1]
D. Saheb, J. Jog: Natural fiber polymer composites: A review, Advances in Polymer Technology, Vol. 18 (1999), p.351.
DOI: 10.1002/(sici)1098-2329(199924)18:4<351::aid-adv6>3.0.co;2-x
Google Scholar
[2]
A.S. Herrmann, J. Nickel, U. Riedel: Construction materials based upon biologically renewable resources - from components to finished parts, Polymer Degradation and Stability, Vol. 59 (1998), p.251.
DOI: 10.1016/s0141-3910(97)00169-9
Google Scholar
[3]
F. Vilaseca, A. Lopez, X. Llauro, M.A. Pelach, P. Mutje: Hemp strands as reinforcement of polystyrene composites, Chemical Engineering Research & Design, Vol. 82 (2004), p.1425.
DOI: 10.1205/cerd.82.11.1425.52038
Google Scholar
[4]
A. Keller: Compounding and mechanical properties of biodegradable hemp fibre composites, Composites Science and Technology, Vol. 63 (2003), p.1307.
DOI: 10.1016/s0266-3538(03)00102-7
Google Scholar
[5]
K.L. Pickering, G.W. Beckermann, S.N. Alam, N.J. Foreman: Optimising industrial hemp fibre for composites, Composites Part a-Applied Science and Manufacturing, Vol. 38 (2007), p.461.
DOI: 10.1016/j.compositesa.2006.02.020
Google Scholar
[6]
D. Roulson, M. Sain, M. Couturier: Resin transfer molding of hemp fiber composites: optimization of the process and mechanical properties of the materials, Composites Science and Technology, Vol. 66 (2006), p.895.
DOI: 10.1016/j.compscitech.2005.07.040
Google Scholar
[7]
Y. Li, K.L. Pickering: Hemp fibre reinforced composites using chelator and enzyme treatments, Composites Science and Technology, Vol. 68 (2008), p.3293.
DOI: 10.1016/j.compscitech.2008.08.022
Google Scholar
[8]
H.Y. Cheung, M.P. Ho, K.T. Lau, F. Cardona, D. Hui: Natural fibre-reinforced composites for bioengineering and environmental engineering applications, Composites Part B-Engineering, Vol. 40 (2009), p.655.
DOI: 10.1016/j.compositesb.2009.04.014
Google Scholar
[9]
M. Pracella, D. Chionna, I. Anguillesi, Z. Kulinski, E. Piorkowska: Functionalization, compatibilization and properties of polypropylene composites with Hemp fibres, Composites Science and Technology, Vol. 66 (2006), p.2218.
DOI: 10.1016/j.compscitech.2005.12.006
Google Scholar
[10]
S. Guessasma, D. Bassir, Identification of mechanical properties of biopolymer composites sensitive to interface effect using hybrid approach, Mechanics of Materials, Vol. 42 (2010), p.344.
DOI: 10.1016/j.mechmat.2009.12.001
Google Scholar
[11]
S. Guessasma, D. Bassir, Comparing heuristic and deterministic approaches to optimise mechanical parameters of biopolymer composite materials, Mechanics of Advanced Materials and Structures, Vol. 16 (2009), p.293.
DOI: 10.1080/15376490902800785
Google Scholar
[12]
S. Guessasma, Multiscale modelling and optimization strategies for better understanding of biopolymer mechanical properties : review of recent contributions, Int. J. Simul. Multidisci. Des. Optim. Vol. 3 (2009), p.419.
DOI: 10.1051/ijsmdo/2009018
Google Scholar
[13]
S. Rjafiallah, S. Guessasma: Three-phase model and digital image correlation to assess the interphase effect on the elasticity of carbohdyrate polymer-based composites reinforced with glass silica beads, Carbohydrate Polymers, Vol. 83 (2011).
DOI: 10.1016/j.carbpol.2010.07.055
Google Scholar
[14]
L. Benabou, N. Benseddiq, M. Nait-Abdelaziz: Comparative analysis of damage at interfaces of composites, Composites: Part B, Vol. 33 (2002), p.215.
DOI: 10.1016/s1359-8368(02)00004-5
Google Scholar