[1]
H.K. Kug, C.K. Young, & J. Eun, Evaluation of indentation tensile properties of Ti alloys by considering plastic constraint effect, In: Materials Science and Engineering A 528, 5259–5263, (2011).
DOI: 10.1016/j.msea.2011.03.052
Google Scholar
[2]
J.R. Cahoon, W.H. Broughton, A.R. Kutzak, The determination of yield strength from hardness measurements, In: Metallurgical Transactions 2, 1979–1983, (1971).
DOI: 10.1007/bf02913433
Google Scholar
[3]
K. Sangwal, B. Surowska, P. Blaziak, Relationship between indentation size effect and material properties in the micro-hardness measurement of some cobalt-based alloys, In: [J]. Mater Chem Phys, 80: 428-437, (2003).
DOI: 10.1016/s0254-0584(02)00546-1
Google Scholar
[4]
J. Frene, O. Bonneau, H. Zaidi, M. Arghir, Wear Damage in Tribology. Historical Aspects and Present Knowledge, J. of Balkan Tribological Association, 14 (3), 331 (2008).
Google Scholar
[5]
F. Romeiro, M. de Freitas, M. da Fonte, 2009, Fatigue crack growth with overloads/underloads: Interaction effects and surface roughness, International Journal of Fatigue 31 p.1889–1894.
DOI: 10.1016/j.ijfatigue.2009.01.001
Google Scholar
[6]
M. Meyers, K. Chawla, Mechanical Behavior of Materials, 162–168, (1999).
Google Scholar
[7]
R.L. Smith, G.E. Sandland, An Accurate Method of Determining the Hardness of Metals, with Particular Reference to Those of a High Degree of Hardness, In: Proceedings of the Institution of Mechanical Engineer, Vol. I, p.623–641, (1922).
DOI: 10.1243/pime_proc_1922_102_033_02
Google Scholar
[8]
M. Ilze, M. Janis, Size effects in micro- and nanoscale indentation, In: Acta Mater, 54: 2049-2056, (2006).
Google Scholar
[9]
K. Sangwal, B. Surowska, P. Blaziak, Relationship between indentation size effect and material properties in the micro-hardness measurement of some cobalt-based alloys, In: Mater Chem Phys, 80: 428-437, (2003).
DOI: 10.1016/s0254-0584(02)00546-1
Google Scholar
[10]
R.G. Wellman, H. Tourmente, S. Impey, J.R. Nicholls, Nano and microhardness testing of aged EB PVD TBCs, In: Surf Coat Technol, 188/189: 79-84, (2004).
DOI: 10.1016/j.surfcoat.2004.08.018
Google Scholar
[11]
S. Băicean, L. Palaghian, M. Buciumeanu, V. Mereuţă, Damage prediction in fatigue corrosion processes, In: Proc. of International Conference on Diagnosis and Prediction in Mechanical Engineering Systems (DIPRE'09)22-23 Oct. 2009, Galati, Romania, ISBN 978-606-8008-33-2.
Google Scholar
[12]
V. Mereuţă, L. Palaghian, Comparison between two methods in assesing the surface quality for different manufacture process, In: Annals of DAAM for 2010&Proceedings of 21 st. International DAAM Symposium 20-23 oct. 2010, Zudar Croatia (ISI Proceeding), pp.1459-1460, ISSN 1726-9679, (2010).
Google Scholar
[13]
R.S. Pawade, S. Suhas, P.K. Brahmankar, Effect of machining parameters and cutting edge geometry on surface integrity of high-speed turned Inconel 718, In: International Journal of Machine Tools & Manufacture 48, 15–28, (2008).
DOI: 10.1016/j.ijmachtools.2007.08.004
Google Scholar
[14]
T.I. El-Wardany, H.A. Kishawi, M.A. Elbestawi, Surface integrity of die material in high speed hard machining, Part 2: microhardness variations and residual stresses, In: Transactions of ASME, Journal of Manufacturing Science and Engineering 122, 632–641, (2000).
DOI: 10.1115/1.1286557
Google Scholar