Influence of Precursor Solution Concentration on Zinc Oxide Nanostructures by Hydrothermal Growth

Article Preview

Abstract:

In this paper, various ZnO nanostructures, such as rods, flowers were grown on indium-tin-oxide (ITO) substrates by hydrothermal growth at low temperature, using the different concentrations of equimolar (1:1) zinc nitrate (Zn (NO3)26H2O) and methenamine (C6H12N4) mixed as precursors solution, and adding ammonia solution to control the pH levels. SEM, XRD were utilized to characterize morphologies and crystal structures of ZnO. It was indicated that the concentration of precursor solution leads to the significantly changes in the nanostructured ZnO. The possible growth mechanism is discussed in this work.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 875-877)

Pages:

562-566

Citation:

Online since:

February 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Liang, H. Sheng, Y. Liu, Z. Hio, Y. Lu and H. Shen: J. Cryst. Growth Vol. 225 (2001), p.110.

Google Scholar

[2] J.Y. Lee, Y.S. Choi, J.H. Kim, M.O. Park and S. Im: Thin Solid Films Vol. 403 (2002), p.553.

Google Scholar

[3] N. Golego, S.A. Studenikin and M. Cocivera: J. Electrochem. Soc. Vol. 147 (2000), p.1592.

Google Scholar

[4] H. Rensmo, K. Keis, H. Lindstrom, S. Sodergren, A. Solbrand, A. Hagfeldt, S. -E. Lindquist, L. Wang and M. Muhammed: J. Phys. Chem. B Vol. 101 (1997), p.2598.

DOI: 10.1021/jp962918b

Google Scholar

[5] K. Keis, L. Vayssieres, S. -E. Lindquist, A. Hagfeldt: Nanostruct. Mater. Vol. 12 (1999), p.487.

Google Scholar

[6] M.H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo and P. Yang: Science Vol. 292 (2001), p.1897.

DOI: 10.1126/science.1060367

Google Scholar

[7] Z.W. Pan, Z.R. Dai and Z.L. Wang: Science Vol. 291 (2001), p. (1947).

Google Scholar

[8] Z.R. Tian, J.A. Voigt, J. Liu, B. McKenzie, M.J. McDermott, M.A. Rodriguez, H. Konishi and H. Xu: Nat. Mater. Vol. 2 (2003), p.821.

Google Scholar

[9] S.J. Henley, M.N.R. Ashfold, D.P. Nicholls, P. Wheatley and D.E. Cherns: Appl. Phys. A. Vol. 79 (2004), p.1169.

Google Scholar

[10] Y. Li, G.W. Meng, L.D. Zhang and F. Phillipp: Appl. Phys. Lett. Vol. 76 (2000), p. (2011).

Google Scholar

[11] J.J. Wu and S.C. Liu: Adv. Mater. Vol. 14 (2002), p.215.

Google Scholar

[12] Y. Sun, G.M. Fuge and M.N.R. Ashfold: Chem. Phys. Lett. Vol. 396 (2004), p.21.

Google Scholar

[13] S. Choopun, H. Tabata and T. Kawai: J. Cryst. Growth Vol. 274 (2005), p.167.

Google Scholar

[14] L. Vayssieres: Int. J. Nanotechnol. Vol. 1 (2004), p.1.

Google Scholar

[15] L. Vayssieres: Adv. Mater. Vol. 15 (2003), p.464.

Google Scholar

[16] D. Vernardou, G. Kenanakis, S. Couris, E. Koudoumas, E. Kymakis and N. Katsarakis: Thin Solid Films Vol. 515 (2007), p.8764.

DOI: 10.1016/j.tsf.2007.03.108

Google Scholar

[17] Y.J. Gao, W.C. Zhang, X.L. Wu, Y. Xia, G.S. Huang, L.L. Xu, J.C. Shen, G.G. Siu and Paul K. Chu: Applied Surface Science Vol. 255 (2008), p. (1982).

Google Scholar

[18] X. F. Duan and C. M. Lieber: Adv. Mater. Vol. 279 (2000), p.208.

Google Scholar

[19] K. Yu, Z.G. Jin, X.X. Liu, J. Zhao and J.Y. Feng: Applied Surface Science, Vol. 253(2007), p.4072.

Google Scholar

[20] Q. Ahsanulhaq, S.H. Kim, J.H. Kim, et al: Materials Research Bulletin 43. (2008), p.3483.

Google Scholar