Investigation of Mechanical Properties of Nanostructured Titanium Processed by Warm ECAP Followed Cold Rolling

Article Preview

Abstract:

In this work, ECAP technique was combined with cold rolling process in order to enhance mechanical properties and microstructure of pure Titanium. Coarse grain (CG) Titanium with original grain size of 150 μm had been pressed by ECAP at 425oC by 4, 8 and 12 passes, respectively. This process then was followed by rolling at room temperature with 35%, 55%, and 75% rolling strains. After two steps, mechanical properties such as strength, hardness and microstructure of processed Titanium have been measured. The result indicated significant effect of cold rolling on tensile strength, hardness and microstructure of ECAP-Titanium.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 875-877)

Pages:

63-67

Citation:

Online since:

February 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] V.V. Stolyarov, Y.T. Zhu, I.V. Alexandrov, T.C. Lowe, R.Z. Valiev, Influence of ECAP routes on the Microstructure and Properties of Pure Ti, Mater. Sci. Eng. A. (in press).

DOI: 10.1016/s0921-5093(00)01411-8

Google Scholar

[2] S. Ferrasse, V.M. Segal, K.T. Hartwig, R.E. Goforth, Metall. Mater. Trans. 28A (1997) 1047.

Google Scholar

[3] S. Ferrasse, V.M. Segal, K.T. Hartwig, R.E. Goforth, J. Mater. Res. 12 (1997) 1253.

Google Scholar

[4] Y. Iwahashi, Z. Horita, M. Nemoto, T.G. Langdon, Acta Mater. 46 (1998) 3317.

Google Scholar

[5] K. Oh-Ishi, Z. Horita, M. Furukawa, M. Nemoto, Metall. Mater. Trans. 29A (1998) (2011).

Google Scholar

[6] K. Nakashima, Z. Horita, M. Nemoto, T.G. Langdon, Acta Mater. 46 (1998) 1589.

Google Scholar

[7] Y. Iwahashi, Z. Horita, M. Nemoto, T.G. Langdon, Metall. Mater. Trans. 29A (1998) 2503.

Google Scholar

[8] V.M. Segal, Mater. Sci. Eng. A 197 (1995) 157.

Google Scholar

[9] R.Z. Valiev, I.V. Alexandrov, Y.T. Zhu, T.C. Lowe, J. Mater. Res. 17 (2002) 5.

Google Scholar

[10] Mike Zhu, Sulzer Orthopedics, Inc, Austin, Texas, unpublished data.

Google Scholar

[11] R.Z. Valiev, R.K. Islamgaliev, I.V. Alexandrov, Prog. Mater. Sci. 45 (2000) 103.

Google Scholar

[12] Z. Horita, M. Furukawa, M. Nemoto, A.J. Barnes, T.G. Langdon, Acta Mater. 48 (2000) 3633.

Google Scholar

[13] S. Lee, A. Utsunomiya, H. Akamatsu, K. Neishi, M. Furukawa, Z. Horita, T.G. Langdon, Acta Mater. 50 (2002) 553.

DOI: 10.1016/s1359-6454(01)00368-8

Google Scholar

[14] S.L. Semiatin, V.M. Segal, R.E. Goforth, N.D. Frey, D.P. Delo, Metall. Mater. Trans. 30A (1999) 1425.

Google Scholar

[15] V.V. Stolyarov, Y.T. Zhu, I.V. Alexandrov, T.C. Lowe, R.Z. Valiev, Mater. Sci. Eng. A 303 (2001) 82.

Google Scholar

[16] V.V. Stolyarov, Y.T. Zhu, T.C. Lowe, R.Z. Valiev, J. Nanosci. Nanotechnol. 1 (2001) 237.

Google Scholar