Chemical and Mineralogical Characterizations of Cobalt Precursor Recovered from Spent Lithium-Ion Batteries with Incineration Process

Article Preview

Abstract:

The chemical and mineralogical characterizations of cobalt precursor recovered from spent lithium-ion batteries with incineration process was analyzed by X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). It indicates that Co exists in the form of LiCoO2. However, after thermal treatment, complex products including LiCoO2, Co3O4, and Co2AlO4 etc. generated, in which Co3O4 has strong signal. The XPS spectra shows that Li(1-x)CoO2 and LiCoO2 are the main chemical state of Co in the original sample, but after thermal treatment, the chemical state changes to Co3O4. Besides, there are undecomposed Li(1-x)CoO2, CoF3 and Co. Analyses indicate that Co is enriched after thermal treatment and chemical state of some Co have been certified.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

51-56

Citation:

Online since:

January 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M.B.J.G. Freitas, E.M. Garcia, Electrochemical recycling of cobalt from cathodes of spent lithium-ion batteries, J. Power Sources. 171(2007) 953-959.

DOI: 10.1016/j.jpowsour.2007.07.002

Google Scholar

[2] T.C. Chang, S.J. You, B.S. Yu, et al, A material flow of lithium batteries in Taiwan, J. Hazard. Mater. 163(2009) 910-915.

Google Scholar

[3] L. Li, R.J. Chen, F. Sun, et al, Preparation of LiCoO2 films from spent lithium-ion batteries by a combined recycling process, Hydrometallurgy. 108(2011) 220-225.

DOI: 10.1016/j.hydromet.2011.04.013

Google Scholar

[4] G. Dorella, M.B. Mansur, A study of the separation of cobalt from spent Li-ion battery residues, J. Power Sources. 170(2007) 210-215.

DOI: 10.1016/j.jpowsour.2007.04.025

Google Scholar

[5] D.F. Li, C.Y. Wang, F. Yin, et al, Phase analysis and leaching of roasted residue of spent lithium-ion batteries(in Chinese), Chinese Journal of Rare Metals. 3(2009) 382-385.

Google Scholar

[6] J.Q. Xu, H.R. Thomas, R.W. Francis, K.R. Lum, J.W. Wang, B. Liang, A review of processes and technologies for the recycling of lithium-ion secondary batteries, J. Power Sources 177 (2008) 512–527.

DOI: 10.1016/j.jpowsour.2007.11.074

Google Scholar

[7] S.M. Shin, N.H. Kim, J.S. Sohn, D.H. Yang, Y.H. Kim, Development of a metal recovery process from Li-ion battery wastes, Hydrometallurgy79 (2005) 172–181.

DOI: 10.1016/j.hydromet.2005.06.004

Google Scholar

[8] S. Castillo, F. Ansart, C. Laberty-Robert, J. Portal, Advances in the recovering of spent lithium battery compounds, J. Power Sources 112(2002) 247–254.

DOI: 10.1016/s0378-7753(02)00361-0

Google Scholar

[9] C.K. Lee, K.I. Rhee, Preparation of LiCoO2 from spent lithium-ion batteries J. Power Sources 109 (2002) 17–21.

DOI: 10.1016/s0378-7753(02)00037-x

Google Scholar

[10] M. Bahgat, F.E. Farghaly, S.M. Abdel Basir, O.A. Fouad, J. Mater. Synthesis, characterization and magnetic properties of microcrystalline lithium cobalt ferrite from spent lithium-ion batteries, J. Mater. Process Tech. 183 (2007) 117–121.

DOI: 10.1016/j.jmatprotec.2006.10.005

Google Scholar

[11] Q. Zhang, J. Lu, F. Saito, C. Nagata, Y. Ito, Room temperature acid extraction of Co from LiCo0. 2Ni0. 8O2 scrap by a mechanochemical treatment, Advanced Powder Technol. 11(2000) 353–359.

DOI: 10.1163/156855200750172222

Google Scholar

[12] M. Contestabile, S. Panero, B. Scrosati, A laboratory-scale lithium-ion battery recycling process. J. Power Sources 92 (2001) 65–69.

DOI: 10.1016/s0378-7753(00)00523-1

Google Scholar

[13] L. Li, J. Ge, F. Wu, R. Chen, S. Chen, B. Wu, Recovery of cobalt and lithium from spent lithium ion batteries using organic citric acid as leachant, J. Hazard. Mater. 176 (2010) 288–293.

DOI: 10.1016/j.jhazmat.2009.11.026

Google Scholar

[14] C.K. Lee, K.I. Rhee, Reductive leaching of cathodic active materials from lithium ion battery wastes, Hydrometallurgy 68 (2003) 5–10.

DOI: 10.1016/s0304-386x(02)00167-6

Google Scholar

[15] D. Mishra, D. Kim, D.E. Ralph, J. Ahn, Y. Rhee, Bioleaching of metals from spent lithium ion secondary batteries using Acidithiobacillus ferrooxidans, Waste Management 28 (2008) 333–338.

DOI: 10.1016/j.wasman.2007.01.010

Google Scholar

[16] B. Xin, D. Zhang, X. Zhang, Y. Xia, F. Wu, S. Chen, L. Li, Bioleaching mechanism of Co and Li from spent lithium-ion battery by the mixed culture of acidophilic sulfur-oxidizing and iron-oxidizing bacteria, Bioresource. Technol. 100 (2009).

DOI: 10.1016/j.biortech.2009.06.086

Google Scholar

[17] K. Yoo, S. Shin, D. Yang, J. Sohn, Biological treatment of wastewater produced during recycling of spent lithium primary battery, Minerals Engineering 23 (2010) 219–224.

DOI: 10.1016/j.mineng.2009.11.011

Google Scholar

[18] G. Zeng, X. Deng, S. Luo, X. Luo, J. Zou, A copper-catalyzed bioleaching process for enhancement of cobalt dissolution from spent lithium-ion batteries, J. Hazard. Mater. 199– 200 (2012) 164– 169.

DOI: 10.1016/j.jhazmat.2011.10.063

Google Scholar

[19] D.P. Mantuano, G. Dorella, R.C.A. Elias, M.B. Mansur, Analysis of a hydrometallurgical route to recover base metals from spent rechargeable batteries by liquid–liquid extraction with Cyanex 272, J. Power Sources 159 (2006) 1510–1518.

DOI: 10.1016/j.jpowsour.2005.12.056

Google Scholar

[20] J. Myoung, Y. Jung, J. Lee, Y. Tak, Cobalt oxide preparation from waste LiCoO2 by electrochemical–hydrothermal method, J. Power Sources 112 (2002) 639–642.

DOI: 10.1016/s0378-7753(02)00459-7

Google Scholar

[21] T. Zhang, Y. He, L. Ge, R. Fu, X. Zhang, Y. Huang, Characteristics of wet and dry crushing methods in the recycling process of spent lithium-ion batteries, J. Power Sources 240, (2013) 766-771.

DOI: 10.1016/j.jpowsour.2013.05.009

Google Scholar

[22] T. Zhang, C.B. Wu, C.Y. Wang, et al, Mechanical crushing properties of spent cell phone lithium-ion batteries(in Chinese), Journal of Central South University: Science and Technology. 09(2012) 3355-3362.

Google Scholar

[23] C. Wu, F. Wu, L.Q. Chen, et al, X-ray diffraction and X-ray photoelectron spectroscopy analysis of Cr-doped spinel LiMn2O4 for lithium ion batteries, Solid State Ionics. 152–153 (2002) 335-339.

DOI: 10.1016/s0167-2738(02)00328-4

Google Scholar

[24] J. Światowska, V. Lair, C. Pereira-Nabais, et al, XPS, XRD and SEM characterization of a thin ceria layer deposited onto graphite electrode for application in lithium-ion batteries, Appl. Surf. Sci. 257(2011) 9110-9119.

DOI: 10.1016/j.apsusc.2011.05.108

Google Scholar

[25] R.I.R. Blyth, H. Buqa, F.P. Netzer, et al, XPS studies of graphite electrode materials for lithium ion batteries, Appl. Surf. Sci. 167(2000) 99-106.

DOI: 10.1016/s0169-4332(00)00525-0

Google Scholar

[26] J. Bok, J. Lee, B. Lee, et al, Effects of synthetic conditions on electrochemical activity of LiCoO2 prepared from recycled cobalt compounds, Solid State Ionics. 169(2004) 139-144.

DOI: 10.1016/j.ssi.2003.07.003

Google Scholar

[27] M. Matsui, K. Dokko, K. Kanamura. Dynamic behavior of surface film on LiCoO2 thin film electrode, J. Power Sources. 177(2008) 184-193.

DOI: 10.1016/j.jpowsour.2007.10.078

Google Scholar