[1]
M.B.J.G. Freitas, E.M. Garcia, Electrochemical recycling of cobalt from cathodes of spent lithium-ion batteries, J. Power Sources. 171(2007) 953-959.
DOI: 10.1016/j.jpowsour.2007.07.002
Google Scholar
[2]
T.C. Chang, S.J. You, B.S. Yu, et al, A material flow of lithium batteries in Taiwan, J. Hazard. Mater. 163(2009) 910-915.
Google Scholar
[3]
L. Li, R.J. Chen, F. Sun, et al, Preparation of LiCoO2 films from spent lithium-ion batteries by a combined recycling process, Hydrometallurgy. 108(2011) 220-225.
DOI: 10.1016/j.hydromet.2011.04.013
Google Scholar
[4]
G. Dorella, M.B. Mansur, A study of the separation of cobalt from spent Li-ion battery residues, J. Power Sources. 170(2007) 210-215.
DOI: 10.1016/j.jpowsour.2007.04.025
Google Scholar
[5]
D.F. Li, C.Y. Wang, F. Yin, et al, Phase analysis and leaching of roasted residue of spent lithium-ion batteries(in Chinese), Chinese Journal of Rare Metals. 3(2009) 382-385.
Google Scholar
[6]
J.Q. Xu, H.R. Thomas, R.W. Francis, K.R. Lum, J.W. Wang, B. Liang, A review of processes and technologies for the recycling of lithium-ion secondary batteries, J. Power Sources 177 (2008) 512–527.
DOI: 10.1016/j.jpowsour.2007.11.074
Google Scholar
[7]
S.M. Shin, N.H. Kim, J.S. Sohn, D.H. Yang, Y.H. Kim, Development of a metal recovery process from Li-ion battery wastes, Hydrometallurgy79 (2005) 172–181.
DOI: 10.1016/j.hydromet.2005.06.004
Google Scholar
[8]
S. Castillo, F. Ansart, C. Laberty-Robert, J. Portal, Advances in the recovering of spent lithium battery compounds, J. Power Sources 112(2002) 247–254.
DOI: 10.1016/s0378-7753(02)00361-0
Google Scholar
[9]
C.K. Lee, K.I. Rhee, Preparation of LiCoO2 from spent lithium-ion batteries J. Power Sources 109 (2002) 17–21.
DOI: 10.1016/s0378-7753(02)00037-x
Google Scholar
[10]
M. Bahgat, F.E. Farghaly, S.M. Abdel Basir, O.A. Fouad, J. Mater. Synthesis, characterization and magnetic properties of microcrystalline lithium cobalt ferrite from spent lithium-ion batteries, J. Mater. Process Tech. 183 (2007) 117–121.
DOI: 10.1016/j.jmatprotec.2006.10.005
Google Scholar
[11]
Q. Zhang, J. Lu, F. Saito, C. Nagata, Y. Ito, Room temperature acid extraction of Co from LiCo0. 2Ni0. 8O2 scrap by a mechanochemical treatment, Advanced Powder Technol. 11(2000) 353–359.
DOI: 10.1163/156855200750172222
Google Scholar
[12]
M. Contestabile, S. Panero, B. Scrosati, A laboratory-scale lithium-ion battery recycling process. J. Power Sources 92 (2001) 65–69.
DOI: 10.1016/s0378-7753(00)00523-1
Google Scholar
[13]
L. Li, J. Ge, F. Wu, R. Chen, S. Chen, B. Wu, Recovery of cobalt and lithium from spent lithium ion batteries using organic citric acid as leachant, J. Hazard. Mater. 176 (2010) 288–293.
DOI: 10.1016/j.jhazmat.2009.11.026
Google Scholar
[14]
C.K. Lee, K.I. Rhee, Reductive leaching of cathodic active materials from lithium ion battery wastes, Hydrometallurgy 68 (2003) 5–10.
DOI: 10.1016/s0304-386x(02)00167-6
Google Scholar
[15]
D. Mishra, D. Kim, D.E. Ralph, J. Ahn, Y. Rhee, Bioleaching of metals from spent lithium ion secondary batteries using Acidithiobacillus ferrooxidans, Waste Management 28 (2008) 333–338.
DOI: 10.1016/j.wasman.2007.01.010
Google Scholar
[16]
B. Xin, D. Zhang, X. Zhang, Y. Xia, F. Wu, S. Chen, L. Li, Bioleaching mechanism of Co and Li from spent lithium-ion battery by the mixed culture of acidophilic sulfur-oxidizing and iron-oxidizing bacteria, Bioresource. Technol. 100 (2009).
DOI: 10.1016/j.biortech.2009.06.086
Google Scholar
[17]
K. Yoo, S. Shin, D. Yang, J. Sohn, Biological treatment of wastewater produced during recycling of spent lithium primary battery, Minerals Engineering 23 (2010) 219–224.
DOI: 10.1016/j.mineng.2009.11.011
Google Scholar
[18]
G. Zeng, X. Deng, S. Luo, X. Luo, J. Zou, A copper-catalyzed bioleaching process for enhancement of cobalt dissolution from spent lithium-ion batteries, J. Hazard. Mater. 199– 200 (2012) 164– 169.
DOI: 10.1016/j.jhazmat.2011.10.063
Google Scholar
[19]
D.P. Mantuano, G. Dorella, R.C.A. Elias, M.B. Mansur, Analysis of a hydrometallurgical route to recover base metals from spent rechargeable batteries by liquid–liquid extraction with Cyanex 272, J. Power Sources 159 (2006) 1510–1518.
DOI: 10.1016/j.jpowsour.2005.12.056
Google Scholar
[20]
J. Myoung, Y. Jung, J. Lee, Y. Tak, Cobalt oxide preparation from waste LiCoO2 by electrochemical–hydrothermal method, J. Power Sources 112 (2002) 639–642.
DOI: 10.1016/s0378-7753(02)00459-7
Google Scholar
[21]
T. Zhang, Y. He, L. Ge, R. Fu, X. Zhang, Y. Huang, Characteristics of wet and dry crushing methods in the recycling process of spent lithium-ion batteries, J. Power Sources 240, (2013) 766-771.
DOI: 10.1016/j.jpowsour.2013.05.009
Google Scholar
[22]
T. Zhang, C.B. Wu, C.Y. Wang, et al, Mechanical crushing properties of spent cell phone lithium-ion batteries(in Chinese), Journal of Central South University: Science and Technology. 09(2012) 3355-3362.
Google Scholar
[23]
C. Wu, F. Wu, L.Q. Chen, et al, X-ray diffraction and X-ray photoelectron spectroscopy analysis of Cr-doped spinel LiMn2O4 for lithium ion batteries, Solid State Ionics. 152–153 (2002) 335-339.
DOI: 10.1016/s0167-2738(02)00328-4
Google Scholar
[24]
J. Światowska, V. Lair, C. Pereira-Nabais, et al, XPS, XRD and SEM characterization of a thin ceria layer deposited onto graphite electrode for application in lithium-ion batteries, Appl. Surf. Sci. 257(2011) 9110-9119.
DOI: 10.1016/j.apsusc.2011.05.108
Google Scholar
[25]
R.I.R. Blyth, H. Buqa, F.P. Netzer, et al, XPS studies of graphite electrode materials for lithium ion batteries, Appl. Surf. Sci. 167(2000) 99-106.
DOI: 10.1016/s0169-4332(00)00525-0
Google Scholar
[26]
J. Bok, J. Lee, B. Lee, et al, Effects of synthetic conditions on electrochemical activity of LiCoO2 prepared from recycled cobalt compounds, Solid State Ionics. 169(2004) 139-144.
DOI: 10.1016/j.ssi.2003.07.003
Google Scholar
[27]
M. Matsui, K. Dokko, K. Kanamura. Dynamic behavior of surface film on LiCoO2 thin film electrode, J. Power Sources. 177(2008) 184-193.
DOI: 10.1016/j.jpowsour.2007.10.078
Google Scholar