A Mini-Review on Disposal of WEEE Plastics Containing PBDEs with a Special Focus on China

Article Preview

Abstract:

Polybrominated diphenyl ethers (PBDEs), especially pentaBDE and decaBDE have been extensively used as flame retardants in plastics of most electronic equipment. However, PBDE congeners have been found in the environment, in wildlife and in human body worldwide with evidences that they pose risks both to human health and to the entire ecosystem. China has become an important pentaBDE and decaBDE production country because of the increasing domestic demand due to rapid development of electronic industry in recent years. Although pentaBDE was phased out in 2004, decaBDE still remains in production and is used in electrical industry. Additionally, large amounts of plastics containing these pollutants from waste electrical and electronic equipment (WEEE) are generated in China each year and their disposal has been a vital environmental challenge. Machaniclal recycling, fedlock recycling and landfilling are three main means of disposal of WEEE plastics. This article reviews the production of PBDEs, the amounts of WEEE and the disposal of WEEE plastics worldwide, with a special focus on China. The state of the emission of PBDEs and highly toxic polybrominated dibenzo dioxins/furans in the process of disposal is summed up based on previous studies. This article recommends that mechanical recycling should be the main means of disposal of WEEE recycling with regards to the summaries, the current practices and the status in China.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

600-608

Citation:

Online since:

January 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. D. Shaw, K. Kannan, Polybrominated diphenyl ethers in marine ecosystems of the American continents: Foresight from current knowledge, Reviews on environmental health, 3 (2009) 157-230.

DOI: 10.1515/reveh.2009.24.3.157

Google Scholar

[2] J. Ma, X. Qiu, J. Zhang, X. Duan, T. Zhu, State of polybrominated diphenyl ethers in China: An overview, Chemosphere, 7 (2012) 769-778.

DOI: 10.1016/j.chemosphere.2012.03.093

Google Scholar

[3] Y. Wang, G. Jiang, P. K. S. Lam, A. Li, Polybrominated diphenyl ether in the East Asian environment: A critical review, Environ. Int., 7 (2007) 963-973.

DOI: 10.1016/j.envint.2007.03.016

Google Scholar

[4] P. O. Darnerud, Toxic effects of brominated flame retardants in man and in wildlife, Environ. Int., 6 (2003) 841-853.

DOI: 10.1016/s0160-4120(03)00107-7

Google Scholar

[5] P. R. S. Kodavanti, C. G. Coburn, V. C. Moser, R. C. MacPhail, S. E. Fenton, T. E. Stoker, J. L. Rayner, K. Kannan, L. S. Birnbaum, Developmental exposure to a commercial PBDE mixture, DE-71: Neurobehavioral, hormonal, and reproductive effects, Toxicol. Sci., 1 (2010).

DOI: 10.1093/toxsci/kfq105

Google Scholar

[6] Y. Chen, J. Li, L. Liu, N. Zhao, Polybrominated diphenyl ethers fate in China: A review with an emphasis on environmental contamination levels, human exposure and regulation, J. Environ. Manage., (2012) 22-30.

DOI: 10.1016/j.jenvman.2012.08.003

Google Scholar

[7] E. Hosoda, International aspects of recycling of electrical and electronic equipment: Material circulation in the East Asian region, Journal of Material Cycles and Waste Management, 2 (2007) 140-150.

DOI: 10.1007/s10163-007-0179-8

Google Scholar

[8] M. H. Wong, S. C. Wu, W. J. Deng, X. Z. Yu, Q. Luo, A. O. W. Leung, C. S. C. Wong, W. J. Luksemburg, A. S. Wong, Export of toxic chemicals – a review of the case of uncontrolled electronic-waste recycling, Environ. Pollut., 2 (2007) 131-140.

DOI: 10.1016/j.envpol.2007.01.044

Google Scholar

[9] K. Ni, Y. Lu, T. Wang, Y. Shi, K. Kannan, L. Xu, Q. Li, S. Liu, Polybrominated diphenyl ethers (PBDEs) in China: Policies and recommendations for sound management of plastics from electronic wastes, J. Environ. Manage., 0 (2013) 114-123.

DOI: 10.1016/j.jenvman.2012.09.031

Google Scholar

[10] X. Yang, L. Sun, J. Xiang, S. Hu, S. Su, Pyrolysis and dehalogenation of plastics from waste electrical and electronic equipment (WEEE): A review, Waste Manage., 2 (2013) 462-473.

DOI: 10.1016/j.wasman.2012.07.025

Google Scholar

[11] P. O. Darnerud, G. S. Eriksen, T. Jóhannesson, P. B. Larsen, M. Viluksela, Polybrominated diphenyl ethers: Occurrence, dietary exposure, and toxicology, Environ. Health Persp., (2001) 49-68.

DOI: 10.1289/ehp.01109s149

Google Scholar

[12] F. Rahman, K. H. Langford, M. D. Scrimshaw, J. N. Lester, Polybrominated diphenyl ether (PBDE) flame retardants, Sci. Total Environ., 1–3 (2001) 1-17.

DOI: 10.1016/s0048-9697(01)00852-x

Google Scholar

[13] BSEF, Total market demand, (2006).

Google Scholar

[14] BSEF, Fact sheet: Brominated flame retardant Deca-BDE, (2004).

Google Scholar

[15] Y. Li, C. Tian, M. Yang, H. Jia, J. Ma, D. Li, Global gridded emission inventories of pentabrominated diphenyl ether (PeBDE), European Geosciences Union (EGU) General Assembly, Vienna, Austria, 2010, p.13059.

Google Scholar

[16] C. A. de Wit, An overview of brominated flame retardants in the environment, Chemosphere, 5 (2002) 583-624.

DOI: 10.1016/s0045-6535(01)00225-9

Google Scholar

[17] B. Mai, S. Chen, X. Luo, L. Chen, Q. Yang, G. Sheng, P. Peng, J. Fu, E. Y. Zeng, Distribution of polybrominated diphenyl ethers in sediments of the pearl river delta and adjacent south china sea, Environ. Sci. Technol., 10 (2005) 3521-3527.

DOI: 10.1021/es048083x

Google Scholar

[18] J. Jin, W. Liu, Y. Wang, X. Yan Tang, Levels and distribution of polybrominated diphenyl ethers in plant, shellfish and sediment samples from Laizhou Bay in China, Chemosphere, 6 (2008) 1043-1050.

DOI: 10.1016/j.chemosphere.2007.11.041

Google Scholar

[19] S. Herat, Environmental impacts and use of brominated flame retardants in electrical and electronic equipment, The Environmentalist, 4 (2008) 348-357.

DOI: 10.1007/s10669-007-9144-2

Google Scholar

[20] M. Man, R. Naidu, M. H. Wong, Persistent toxic substances released from uncontrolled e-waste recycling and actions for the future, Sci. Total Environ., (2012).

DOI: 10.1016/j.scitotenv.2012.07.017

Google Scholar

[21] EFRA, Keeping fire in check in electrical and electronic devices, (2011).

Google Scholar

[22] PlasticsEurope, The compelling facts about plastics, (2009).

Google Scholar

[23] P. A. Wäger, M. Schluep, E. Müller, R. Gloor, RoHS regulated substances in mixed plastics from waste electrical and electronic equipment, Environ. Sci. Technol., 2 (2011) 628-635.

DOI: 10.1021/es202518n

Google Scholar

[24] S. Schwarzer, A. De Ono, P. Peduzzi, G. Giuliani, S. Kluser, E-waste, the hidden side of IT equipment's manufacturing and use, UNEP, Geneva, 2005.

Google Scholar

[25] S. M. Alston, A. D. Clark, J. C. Arnold, B. K. Stein, Environmental impact of pyrolysis of mixed WEEE plastics part 1: Experimental pyrolysis data, Environ. Sci. Technol., 21 (2011) 9380-9385.

DOI: 10.1021/es201664h

Google Scholar

[26] MoF, http: /www. mof. gov. cn/zhengwuxinxi/zhengcejiedu/2012zcjd/201205/t20120530_65561 0. html.

Google Scholar

[27] CHEARI, White paper on WEEE recycling industry in China, (2013).

Google Scholar

[28] S. Sakai, Y. Hirai, H. Aizawa, S. Ota, Y. Muroishi, Emission inventory of deca-brominated diphenyl ether (DBDE) in Japan, Journal of Material Cycles and Waste Management, (2006) 56-62.

DOI: 10.1007/s10163-005-0146-1

Google Scholar

[29] A. O. W. Leung, W. J. Luksemburg, A. S. Wong, M. H. Wong, Spatial distribution of polybrominated diphenyl ethers and polychlorinated dibenzo-p-dioxins and dibenzofurans in soil and combusted residue at guiyu, an electronic waste recycling site in southeast china, Environ. Sci. Technol., 8 (2007).

DOI: 10.1021/es0625935.s001

Google Scholar

[30] I. C. Nnorom, O. Osibanjo, Sound management of brominated flame retarded (BFR) plastics from electronic wastes: State of the art and options in Nigeria, Resources, Conservation and Recycling, 12 (2008) 1362-1372.

DOI: 10.1016/j.resconrec.2008.08.001

Google Scholar

[31] J. Wu, X. Luo, Y. Zhang, Y. Luo, S. Chen, B. Mai, Z. Yang, Bioaccumulation of polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs) in wild aquatic species from an electronic waste (e-waste) recycling site in South China, Environ. Int., 8 (2008).

DOI: 10.1016/j.envint.2008.04.001

Google Scholar

[32] W. J. Deng, J. S. Zheng, X. H. Bi, J. M. Fu, M. H. Wong, Distribution of PBDEs in air particals from an electronic waste recycling site compared with Guangzhou and HK, south china, Environ. Int., (2007) 1063-1069.

DOI: 10.1016/j.envint.2007.06.007

Google Scholar

[33] A. Julander, H. Westberg, M. Engwall, B. van Bavel, Distribution of brominated flame retardants in different dust fractions in air from an electronics recycling facility, Sci. Total Environ., 1–3 (2005) 151-160.

DOI: 10.1016/j.scitotenv.2005.01.015

Google Scholar

[34] Y. Zhao, X. Qin, Y. Li, P. Liu, M. Tian, S. Yan, Z. Qin, X. Xu, Y. Yang, Diffusion of polybrominated diphenyl ether (PBDE) from an e-waste recycling area to the surrounding regions in Southeast China, Chemosphere, 11 (2009) 1470-1476.

DOI: 10.1016/j.chemosphere.2009.07.023

Google Scholar

[35] J. Zhang, Y. Jiang, J. Zhou, B. Wu, Y. Liang, Z. Peng, D. Fang, B. Liu, H. Huang, C. He, C. Wang, F. Lu, Elevated body burdens of PBDEs, dioxins, and PCBs on thyroid hormone homeostasis at an electronic waste recycling site in china, Environ. Sci. Technol., 10 (2010).

DOI: 10.1021/es902883a

Google Scholar

[36] A. Besis, C. Samara, Polybrominated diphenyl ethers (PBDEs) in the indoor and outdoor environments – a review on occurrence and human exposure, Environ. Pollut., (2012) 217-229.

DOI: 10.1016/j.envpol.2012.04.009

Google Scholar

[37] A. O. W. Leung, J. K. Y. Chan, G. H. Xing, Y. Xu, S. C. Wu, C. K. C. Wong, C. K. M. Leung, M. H. Wong, Body burdens of polybrominated diphenyl ethers in childbearing-aged women at an intensive electronic-waste recycling site in China, Environ. Sci. Pollut. R., 7 (2010).

DOI: 10.1007/s11356-010-0310-6

Google Scholar

[38] L. Tange, D. Drohmann, Waste electrical and electronic equipment plastics with brominated flame retardants – from legislation to separate treatment – thermal processes, Polym. Degrad. Stabil., 1 (2005) 35-40.

DOI: 10.1016/j.polymdegradstab.2004.03.025

Google Scholar

[39] D. S. Achilias, C. Roupakias, P. Megalokonomos, A. A. Lappas, Ε. V. Antonakou, Chemical recycling of plastic wastes made from polyethylene (LDPE and HDPE) and polypropylene (PP), J. Hazard. Mater., 3 (2007) 536-542.

DOI: 10.1016/j.jhazmat.2007.06.076

Google Scholar

[40] Y. Shih, H. Chou, Y. Peng, Microbial degradation of 4-monobrominated diphenyl ether with anaerobic sludge, J. Hazard. Mater., 0 (2012) 341-346.

DOI: 10.1016/j.jhazmat.2012.02.009

Google Scholar

[41] H. M. Stapleton, N. G. Dodder, Photodegradation of decabromodiphenyl ether in house dust by natural sunlight, Environ. Toxicol. Chem., 2 (2008) 306-312.

DOI: 10.1897/07-301r.1

Google Scholar

[42] R. Taurino, P. Pozzi, T. Zanasi, Facile characterization of polymer fractions from waste electrical and electronic equipment (WEEE) for mechanical recycling, (2010).

DOI: 10.1016/j.wasman.2010.07.014

Google Scholar

[43] X. Liu, H. Bertilsson, Recycling of ABS and ABS/PC blends, J. Appl. Polym. Sci., 3 (1999) 510-515.

DOI: 10.1002/(sici)1097-4628(19991017)74:3<510::aid-app5>3.0.co;2-6

Google Scholar

[44] L. Tange, D. Drohmann, Environmental issues related to end-of-life options of plastics containing brominated flame retardants, Fire Mater., 5 (2004) 403-410.

DOI: 10.1002/fam.841

Google Scholar

[45] S. Hamm, M. Strikkeling, P. F. Ranken, K. P. Rothenbacher, Determination of polybrominated diphenyl ethers and PBDD/Fs during the recycling of high impact polystyrene containing decabromodiphenyl ether and antimony oxide, Chemosphere, 6 (2001).

DOI: 10.1016/s0045-6535(00)00363-5

Google Scholar

[46] L. Tange, J. A. Van Houwelingen, J. R. Peeters, P. Vanegas, Recycling of flame retardant plastics from WEEE, technical and environmental challenges, Advances in Production Engineering and Management, 2 (2013) 67-77.

DOI: 10.14743/apem2013.2.154

Google Scholar

[47] Y. Yang, Q. Huang, Z. Tang, Q. Wang, X. Zhu, W. Liu, Deca-Brominated diphenyl ether destruction and PBDD/F and PCDD/F emissions from coprocessing deca-BDE mixture-contaminated soils in cement kilns, Environ. Sci. Technol., 24 (2012) 13409-13416.

DOI: 10.1021/es3037274

Google Scholar

[48] M. Yuichi, K. Satochi, K. Takashi, K. Takeshi, Polybrominated dibenzo-P-dioxins/furans, biphenyls, diphenyl ethers, and benzenes in flue gas and fly ash from combustion of plastics contaming Decabromodiphenyl ether(PBDE 209), Organohalogen Compounds, (2008).

Google Scholar

[49] J. C. Acomb, M. A. Nahil, P. T. Williams, Thermal processing of plastics from waste electrical and electronic equipment for hydrogen production, J. Anal. Appl. Pyrol., SI (2013) 320-327.

DOI: 10.1016/j.jaap.2012.09.014

Google Scholar

[50] J. Ebert, M. Bahadir, Formation of PBDD/F from flame-retarded plastic materials under thermal stress, Environ. Int., 6 (2003) 711-716.

DOI: 10.1016/s0160-4120(03)00117-x

Google Scholar

[51] S. Peng, L. Chen, L. Li, M. Xie, Thermal decomposition of decabromodiphenyl ether during the temperature rising of flame-retarded HIPS resin in fire, Procedia Engineering, (2011) 349-354.

Google Scholar

[52] S. Jung, S. Kim, J. Kim, Thermal degradation of acrylonitrile–butadiene–styrene (ABS) containing flame retardants using a fluidized bed reactor: The effects of Ca-based additives on halogen removal, Fuel Process. Technol., (2012) 265-270.

DOI: 10.1016/j.fuproc.2011.12.039

Google Scholar

[53] W. J. Hall, P. T. Williams, Quantification of polybrominated diphenyl ethers in oil produced by pyrolysis of flame retarded plastic, Journal of the Energy Institute, 3 (2008) 158-163.

DOI: 10.1179/174602208x330257

Google Scholar

[54] G. Grause, D. Karakita, T. Kameda, T. Bhaskar, T. Yoshioka, Effect of heating rate on the pyrolysis of high-impact polystyrene containing brominated flame retardants: Fate of brominated flame retardants, Journal of Material Cycles and Waste Management, 3 (2012).

DOI: 10.1007/s10163-012-0067-8

Google Scholar

[55] Y. Chen, Research on debromination and purification of pyrolysis oil from recycling TV shells with nanoscale Pd/C catalyst, South China University of Technology, Guangzhou, (2010).

Google Scholar

[56] R. Hischier, P. Wäger, J. Gauglhofer, Does WEEE recycling make sense from an environmental perspective?: The environmental impacts of the Swiss take-back and recycling systems for waste electrical and electronic equipment (WEEE), Environmental Impact Assessment Review, 5 (2005).

DOI: 10.1016/j.eiar.2005.04.003

Google Scholar

[57] S. M. Alston, J. C. Arnold, Environmental impact of pyrolysis of mixed WEEE plastics part 2: Life cycle assessment, Environ. Sci. Technol., 21 (2011) 9386-9392.

DOI: 10.1021/es2016654

Google Scholar

[58] G. Dodbiba, K. Takahashi, J. Sadaki, T. Fujita, The recycling of plastic wastes from discarded TV sets: Comparing energy recovery with mechanical recycling in the context of life cycle assessment, Journal of Cleaner Production, 4 (2008) 458-470.

DOI: 10.1016/j.jclepro.2006.08.029

Google Scholar

[59] L. Tange, J. A. Van Houwelingen, W. Hofland, P. Salemis, Recycling of plastics with flame retardants of electronic waste, a technical and environmental challenge for a sustainable solution, Electronics Goes Green 2012+ (EGG), 2012, Berlin, 2012, pp.1-6.

Google Scholar

[60] M. Matsumoto, T. Kamo, K. Masui, Challenges in promoting 3R of plastics of EOL electronics products, Electronics Goes Green 2012+ (EGG), 2012, Berlin, 2012, pp.1-6.

Google Scholar