[1]
S. D. Shaw, K. Kannan, Polybrominated diphenyl ethers in marine ecosystems of the American continents: Foresight from current knowledge, Reviews on environmental health, 3 (2009) 157-230.
DOI: 10.1515/reveh.2009.24.3.157
Google Scholar
[2]
J. Ma, X. Qiu, J. Zhang, X. Duan, T. Zhu, State of polybrominated diphenyl ethers in China: An overview, Chemosphere, 7 (2012) 769-778.
DOI: 10.1016/j.chemosphere.2012.03.093
Google Scholar
[3]
Y. Wang, G. Jiang, P. K. S. Lam, A. Li, Polybrominated diphenyl ether in the East Asian environment: A critical review, Environ. Int., 7 (2007) 963-973.
DOI: 10.1016/j.envint.2007.03.016
Google Scholar
[4]
P. O. Darnerud, Toxic effects of brominated flame retardants in man and in wildlife, Environ. Int., 6 (2003) 841-853.
DOI: 10.1016/s0160-4120(03)00107-7
Google Scholar
[5]
P. R. S. Kodavanti, C. G. Coburn, V. C. Moser, R. C. MacPhail, S. E. Fenton, T. E. Stoker, J. L. Rayner, K. Kannan, L. S. Birnbaum, Developmental exposure to a commercial PBDE mixture, DE-71: Neurobehavioral, hormonal, and reproductive effects, Toxicol. Sci., 1 (2010).
DOI: 10.1093/toxsci/kfq105
Google Scholar
[6]
Y. Chen, J. Li, L. Liu, N. Zhao, Polybrominated diphenyl ethers fate in China: A review with an emphasis on environmental contamination levels, human exposure and regulation, J. Environ. Manage., (2012) 22-30.
DOI: 10.1016/j.jenvman.2012.08.003
Google Scholar
[7]
E. Hosoda, International aspects of recycling of electrical and electronic equipment: Material circulation in the East Asian region, Journal of Material Cycles and Waste Management, 2 (2007) 140-150.
DOI: 10.1007/s10163-007-0179-8
Google Scholar
[8]
M. H. Wong, S. C. Wu, W. J. Deng, X. Z. Yu, Q. Luo, A. O. W. Leung, C. S. C. Wong, W. J. Luksemburg, A. S. Wong, Export of toxic chemicals – a review of the case of uncontrolled electronic-waste recycling, Environ. Pollut., 2 (2007) 131-140.
DOI: 10.1016/j.envpol.2007.01.044
Google Scholar
[9]
K. Ni, Y. Lu, T. Wang, Y. Shi, K. Kannan, L. Xu, Q. Li, S. Liu, Polybrominated diphenyl ethers (PBDEs) in China: Policies and recommendations for sound management of plastics from electronic wastes, J. Environ. Manage., 0 (2013) 114-123.
DOI: 10.1016/j.jenvman.2012.09.031
Google Scholar
[10]
X. Yang, L. Sun, J. Xiang, S. Hu, S. Su, Pyrolysis and dehalogenation of plastics from waste electrical and electronic equipment (WEEE): A review, Waste Manage., 2 (2013) 462-473.
DOI: 10.1016/j.wasman.2012.07.025
Google Scholar
[11]
P. O. Darnerud, G. S. Eriksen, T. Jóhannesson, P. B. Larsen, M. Viluksela, Polybrominated diphenyl ethers: Occurrence, dietary exposure, and toxicology, Environ. Health Persp., (2001) 49-68.
DOI: 10.1289/ehp.01109s149
Google Scholar
[12]
F. Rahman, K. H. Langford, M. D. Scrimshaw, J. N. Lester, Polybrominated diphenyl ether (PBDE) flame retardants, Sci. Total Environ., 1–3 (2001) 1-17.
DOI: 10.1016/s0048-9697(01)00852-x
Google Scholar
[13]
BSEF, Total market demand, (2006).
Google Scholar
[14]
BSEF, Fact sheet: Brominated flame retardant Deca-BDE, (2004).
Google Scholar
[15]
Y. Li, C. Tian, M. Yang, H. Jia, J. Ma, D. Li, Global gridded emission inventories of pentabrominated diphenyl ether (PeBDE), European Geosciences Union (EGU) General Assembly, Vienna, Austria, 2010, p.13059.
Google Scholar
[16]
C. A. de Wit, An overview of brominated flame retardants in the environment, Chemosphere, 5 (2002) 583-624.
DOI: 10.1016/s0045-6535(01)00225-9
Google Scholar
[17]
B. Mai, S. Chen, X. Luo, L. Chen, Q. Yang, G. Sheng, P. Peng, J. Fu, E. Y. Zeng, Distribution of polybrominated diphenyl ethers in sediments of the pearl river delta and adjacent south china sea, Environ. Sci. Technol., 10 (2005) 3521-3527.
DOI: 10.1021/es048083x
Google Scholar
[18]
J. Jin, W. Liu, Y. Wang, X. Yan Tang, Levels and distribution of polybrominated diphenyl ethers in plant, shellfish and sediment samples from Laizhou Bay in China, Chemosphere, 6 (2008) 1043-1050.
DOI: 10.1016/j.chemosphere.2007.11.041
Google Scholar
[19]
S. Herat, Environmental impacts and use of brominated flame retardants in electrical and electronic equipment, The Environmentalist, 4 (2008) 348-357.
DOI: 10.1007/s10669-007-9144-2
Google Scholar
[20]
M. Man, R. Naidu, M. H. Wong, Persistent toxic substances released from uncontrolled e-waste recycling and actions for the future, Sci. Total Environ., (2012).
DOI: 10.1016/j.scitotenv.2012.07.017
Google Scholar
[21]
EFRA, Keeping fire in check in electrical and electronic devices, (2011).
Google Scholar
[22]
PlasticsEurope, The compelling facts about plastics, (2009).
Google Scholar
[23]
P. A. Wäger, M. Schluep, E. Müller, R. Gloor, RoHS regulated substances in mixed plastics from waste electrical and electronic equipment, Environ. Sci. Technol., 2 (2011) 628-635.
DOI: 10.1021/es202518n
Google Scholar
[24]
S. Schwarzer, A. De Ono, P. Peduzzi, G. Giuliani, S. Kluser, E-waste, the hidden side of IT equipment's manufacturing and use, UNEP, Geneva, 2005.
Google Scholar
[25]
S. M. Alston, A. D. Clark, J. C. Arnold, B. K. Stein, Environmental impact of pyrolysis of mixed WEEE plastics part 1: Experimental pyrolysis data, Environ. Sci. Technol., 21 (2011) 9380-9385.
DOI: 10.1021/es201664h
Google Scholar
[26]
MoF, http: /www. mof. gov. cn/zhengwuxinxi/zhengcejiedu/2012zcjd/201205/t20120530_65561 0. html.
Google Scholar
[27]
CHEARI, White paper on WEEE recycling industry in China, (2013).
Google Scholar
[28]
S. Sakai, Y. Hirai, H. Aizawa, S. Ota, Y. Muroishi, Emission inventory of deca-brominated diphenyl ether (DBDE) in Japan, Journal of Material Cycles and Waste Management, (2006) 56-62.
DOI: 10.1007/s10163-005-0146-1
Google Scholar
[29]
A. O. W. Leung, W. J. Luksemburg, A. S. Wong, M. H. Wong, Spatial distribution of polybrominated diphenyl ethers and polychlorinated dibenzo-p-dioxins and dibenzofurans in soil and combusted residue at guiyu, an electronic waste recycling site in southeast china, Environ. Sci. Technol., 8 (2007).
DOI: 10.1021/es0625935.s001
Google Scholar
[30]
I. C. Nnorom, O. Osibanjo, Sound management of brominated flame retarded (BFR) plastics from electronic wastes: State of the art and options in Nigeria, Resources, Conservation and Recycling, 12 (2008) 1362-1372.
DOI: 10.1016/j.resconrec.2008.08.001
Google Scholar
[31]
J. Wu, X. Luo, Y. Zhang, Y. Luo, S. Chen, B. Mai, Z. Yang, Bioaccumulation of polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs) in wild aquatic species from an electronic waste (e-waste) recycling site in South China, Environ. Int., 8 (2008).
DOI: 10.1016/j.envint.2008.04.001
Google Scholar
[32]
W. J. Deng, J. S. Zheng, X. H. Bi, J. M. Fu, M. H. Wong, Distribution of PBDEs in air particals from an electronic waste recycling site compared with Guangzhou and HK, south china, Environ. Int., (2007) 1063-1069.
DOI: 10.1016/j.envint.2007.06.007
Google Scholar
[33]
A. Julander, H. Westberg, M. Engwall, B. van Bavel, Distribution of brominated flame retardants in different dust fractions in air from an electronics recycling facility, Sci. Total Environ., 1–3 (2005) 151-160.
DOI: 10.1016/j.scitotenv.2005.01.015
Google Scholar
[34]
Y. Zhao, X. Qin, Y. Li, P. Liu, M. Tian, S. Yan, Z. Qin, X. Xu, Y. Yang, Diffusion of polybrominated diphenyl ether (PBDE) from an e-waste recycling area to the surrounding regions in Southeast China, Chemosphere, 11 (2009) 1470-1476.
DOI: 10.1016/j.chemosphere.2009.07.023
Google Scholar
[35]
J. Zhang, Y. Jiang, J. Zhou, B. Wu, Y. Liang, Z. Peng, D. Fang, B. Liu, H. Huang, C. He, C. Wang, F. Lu, Elevated body burdens of PBDEs, dioxins, and PCBs on thyroid hormone homeostasis at an electronic waste recycling site in china, Environ. Sci. Technol., 10 (2010).
DOI: 10.1021/es902883a
Google Scholar
[36]
A. Besis, C. Samara, Polybrominated diphenyl ethers (PBDEs) in the indoor and outdoor environments – a review on occurrence and human exposure, Environ. Pollut., (2012) 217-229.
DOI: 10.1016/j.envpol.2012.04.009
Google Scholar
[37]
A. O. W. Leung, J. K. Y. Chan, G. H. Xing, Y. Xu, S. C. Wu, C. K. C. Wong, C. K. M. Leung, M. H. Wong, Body burdens of polybrominated diphenyl ethers in childbearing-aged women at an intensive electronic-waste recycling site in China, Environ. Sci. Pollut. R., 7 (2010).
DOI: 10.1007/s11356-010-0310-6
Google Scholar
[38]
L. Tange, D. Drohmann, Waste electrical and electronic equipment plastics with brominated flame retardants – from legislation to separate treatment – thermal processes, Polym. Degrad. Stabil., 1 (2005) 35-40.
DOI: 10.1016/j.polymdegradstab.2004.03.025
Google Scholar
[39]
D. S. Achilias, C. Roupakias, P. Megalokonomos, A. A. Lappas, Ε. V. Antonakou, Chemical recycling of plastic wastes made from polyethylene (LDPE and HDPE) and polypropylene (PP), J. Hazard. Mater., 3 (2007) 536-542.
DOI: 10.1016/j.jhazmat.2007.06.076
Google Scholar
[40]
Y. Shih, H. Chou, Y. Peng, Microbial degradation of 4-monobrominated diphenyl ether with anaerobic sludge, J. Hazard. Mater., 0 (2012) 341-346.
DOI: 10.1016/j.jhazmat.2012.02.009
Google Scholar
[41]
H. M. Stapleton, N. G. Dodder, Photodegradation of decabromodiphenyl ether in house dust by natural sunlight, Environ. Toxicol. Chem., 2 (2008) 306-312.
DOI: 10.1897/07-301r.1
Google Scholar
[42]
R. Taurino, P. Pozzi, T. Zanasi, Facile characterization of polymer fractions from waste electrical and electronic equipment (WEEE) for mechanical recycling, (2010).
DOI: 10.1016/j.wasman.2010.07.014
Google Scholar
[43]
X. Liu, H. Bertilsson, Recycling of ABS and ABS/PC blends, J. Appl. Polym. Sci., 3 (1999) 510-515.
DOI: 10.1002/(sici)1097-4628(19991017)74:3<510::aid-app5>3.0.co;2-6
Google Scholar
[44]
L. Tange, D. Drohmann, Environmental issues related to end-of-life options of plastics containing brominated flame retardants, Fire Mater., 5 (2004) 403-410.
DOI: 10.1002/fam.841
Google Scholar
[45]
S. Hamm, M. Strikkeling, P. F. Ranken, K. P. Rothenbacher, Determination of polybrominated diphenyl ethers and PBDD/Fs during the recycling of high impact polystyrene containing decabromodiphenyl ether and antimony oxide, Chemosphere, 6 (2001).
DOI: 10.1016/s0045-6535(00)00363-5
Google Scholar
[46]
L. Tange, J. A. Van Houwelingen, J. R. Peeters, P. Vanegas, Recycling of flame retardant plastics from WEEE, technical and environmental challenges, Advances in Production Engineering and Management, 2 (2013) 67-77.
DOI: 10.14743/apem2013.2.154
Google Scholar
[47]
Y. Yang, Q. Huang, Z. Tang, Q. Wang, X. Zhu, W. Liu, Deca-Brominated diphenyl ether destruction and PBDD/F and PCDD/F emissions from coprocessing deca-BDE mixture-contaminated soils in cement kilns, Environ. Sci. Technol., 24 (2012) 13409-13416.
DOI: 10.1021/es3037274
Google Scholar
[48]
M. Yuichi, K. Satochi, K. Takashi, K. Takeshi, Polybrominated dibenzo-P-dioxins/furans, biphenyls, diphenyl ethers, and benzenes in flue gas and fly ash from combustion of plastics contaming Decabromodiphenyl ether(PBDE 209), Organohalogen Compounds, (2008).
Google Scholar
[49]
J. C. Acomb, M. A. Nahil, P. T. Williams, Thermal processing of plastics from waste electrical and electronic equipment for hydrogen production, J. Anal. Appl. Pyrol., SI (2013) 320-327.
DOI: 10.1016/j.jaap.2012.09.014
Google Scholar
[50]
J. Ebert, M. Bahadir, Formation of PBDD/F from flame-retarded plastic materials under thermal stress, Environ. Int., 6 (2003) 711-716.
DOI: 10.1016/s0160-4120(03)00117-x
Google Scholar
[51]
S. Peng, L. Chen, L. Li, M. Xie, Thermal decomposition of decabromodiphenyl ether during the temperature rising of flame-retarded HIPS resin in fire, Procedia Engineering, (2011) 349-354.
Google Scholar
[52]
S. Jung, S. Kim, J. Kim, Thermal degradation of acrylonitrile–butadiene–styrene (ABS) containing flame retardants using a fluidized bed reactor: The effects of Ca-based additives on halogen removal, Fuel Process. Technol., (2012) 265-270.
DOI: 10.1016/j.fuproc.2011.12.039
Google Scholar
[53]
W. J. Hall, P. T. Williams, Quantification of polybrominated diphenyl ethers in oil produced by pyrolysis of flame retarded plastic, Journal of the Energy Institute, 3 (2008) 158-163.
DOI: 10.1179/174602208x330257
Google Scholar
[54]
G. Grause, D. Karakita, T. Kameda, T. Bhaskar, T. Yoshioka, Effect of heating rate on the pyrolysis of high-impact polystyrene containing brominated flame retardants: Fate of brominated flame retardants, Journal of Material Cycles and Waste Management, 3 (2012).
DOI: 10.1007/s10163-012-0067-8
Google Scholar
[55]
Y. Chen, Research on debromination and purification of pyrolysis oil from recycling TV shells with nanoscale Pd/C catalyst, South China University of Technology, Guangzhou, (2010).
Google Scholar
[56]
R. Hischier, P. Wäger, J. Gauglhofer, Does WEEE recycling make sense from an environmental perspective?: The environmental impacts of the Swiss take-back and recycling systems for waste electrical and electronic equipment (WEEE), Environmental Impact Assessment Review, 5 (2005).
DOI: 10.1016/j.eiar.2005.04.003
Google Scholar
[57]
S. M. Alston, J. C. Arnold, Environmental impact of pyrolysis of mixed WEEE plastics part 2: Life cycle assessment, Environ. Sci. Technol., 21 (2011) 9386-9392.
DOI: 10.1021/es2016654
Google Scholar
[58]
G. Dodbiba, K. Takahashi, J. Sadaki, T. Fujita, The recycling of plastic wastes from discarded TV sets: Comparing energy recovery with mechanical recycling in the context of life cycle assessment, Journal of Cleaner Production, 4 (2008) 458-470.
DOI: 10.1016/j.jclepro.2006.08.029
Google Scholar
[59]
L. Tange, J. A. Van Houwelingen, W. Hofland, P. Salemis, Recycling of plastics with flame retardants of electronic waste, a technical and environmental challenge for a sustainable solution, Electronics Goes Green 2012+ (EGG), 2012, Berlin, 2012, pp.1-6.
Google Scholar
[60]
M. Matsumoto, T. Kamo, K. Masui, Challenges in promoting 3R of plastics of EOL electronics products, Electronics Goes Green 2012+ (EGG), 2012, Berlin, 2012, pp.1-6.
Google Scholar