Solid Supported [hmim][Tf2N] for CO2 Adsorption

Article Preview

Abstract:

Ionic liquids are new alternative solvents that can be used to separate carbon dioxide in the gas separation process. However, the high viscosity of ionic liquids limits the mass transfer of solutes into ionic liquids. In this work, 1-hexyl-3-methylimidazolium bis (trifluoromethylsulfonyl) imide ([hmi [Tf2) was impregnated onto porous Al2O3 and SiO2 and tested for CO2 adsorption at pressure up to 40 bar at 25 °C. The screening process showed that [hmi [Tf2-Si gave higher CO2 adsorption capacity compared to [hmi [Tf2-Al and pure [hmi [Tf2. The experimental work was further investigated by varying the composition of [hmi [Tf2 inside SiO2 pores. The composition of [hmi [Tf2 was varied from 10 wt% to 40 wt%. The result showed the 10 wt% composition gave the highest CO2 adsorption compared to 20 wt%, 30 wt% and 40 wt%. The lower CO2 adsorption by 20 wt%, 30 wt% and 40 wt% might be due to the blockage of SiO2 pores by excess [hmi [Tf2. From this research, it proved that porous solid support can provide high surface area that is necessary to accommodate intimate contact between CO2 and solid supported ionic liquid and increases the CO2 adsorption capacity.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

149-154

Citation:

Online since:

January 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Galan Sanchez, L. M., Meindersma, G. W., and de Haan, A. B., Solvent Properties of Functionalized Ionic Liquids for CO2 Absorption, Chemical Engineering and Research Design, 85 (2007) 31-39.

DOI: 10.1205/cherd06124

Google Scholar

[2] Galan Sanchez, L. M., Meindersma, G. W., and de Haan, A. B., Kinetics of Absorption of CO2 in Amino-Functionalized Ionic Liquids, Chemical Engineering Journal, 166 (2011) 1104-1115.

DOI: 10.1016/j.cej.2010.12.016

Google Scholar

[3] Miao, W. and Chan, T. K., Ionic-Liquid-Supported Synthesis: A Novel Liquid-Phase Strategy for Organic Synthesis, Accounts of Chemical Research, 39 (2006) 897-908.

DOI: 10.1021/ar030252f

Google Scholar

[4] Anderson, J. L., Dixon, J. K., and Brennecke, J. F., Solubility of CO2, CH4, C2H6, C2H4, O2, and N2 in 1-Hexyl-3-methylpyridinium Bis (trifluoromethylsulfonyl) imide: Comparison to Other Ionic Liquids, Accounts of Chemical Research, 40 (2007) 1208-1216.

DOI: 10.1021/ar7001649

Google Scholar

[5] Anthony, J. L., Anderson, J. L., Maginn, E. J., and Brennecke, J. F., Anion Effect on Gas Solubility in Ionic Liquids, Journal of Physical Chemistry B, 109 (2005) 6366-6374.

DOI: 10.1021/jp046404l

Google Scholar

[6] Marsh, K. N., Boxall, J. A., and Lichtenthaler, R., Room Temperature Ionic Liquids and Their Mixtures – A Review, Fluid Phase Equilibria, 219 (2004) 93-98.

DOI: 10.1016/j.fluid.2004.02.003

Google Scholar

[7] Park, S. and Kazlauskas R. J., Biocatalysis in Ionic Liquids – Advantages Beyond Green Technology, Current Opinion in Biotechnology, 14 (2003) 432-437.

DOI: 10.1016/s0958-1669(03)00100-9

Google Scholar

[8] Riisager, A., Fehrmann, R., Haumann, M., Wasserscheid, P., Supported Ionic Liquid: Versatile Reaction and Separation Media, Topics in Catalysis, 40 (2006) 91-102.

Google Scholar

[9] Bara, J. E., Hatakeyama, E. S., Gin, D. L., and Noble, R. D., Improving CO2 Permeability in Polymerized Room-Temperature Ionic Liquid Gas Separation Membranes Through The Formation of a Solid Composite With a Room-Temperature Ionic Liquid, Polymers for Advanced Technology, 19 (2008) 1415–1420.

DOI: 10.1002/pat.1209

Google Scholar

[10] Kuhlmann, E., Haumann, M., Jess, A., Seeberger, A., and Wasserscheid, P., Ionic Liquids in Refinery Desulfurization: Comparison between Biphasic and Supported Ionic Liquid Phase Suspension Processes, Chemistry and Sustainability Energy and Materials, 2 (2009) 969-977.

DOI: 10.1002/cssc.200900142

Google Scholar

[11] Hong, G., Jacquemin, J., Deetlefs, M., Hardacre, C., Husson, P., Gomes, M. F. C., Solubility of Carbon Dioxide and Ethane in Three Ionic Liquids Based on the Bis{(trifluoromethyl)sulfonyl}imide Anion, Fluid Phase Equilibria, 257 (2007) 27-34.

DOI: 10.1016/j.fluid.2007.05.002

Google Scholar

[12] Myers, C., Pennline, H., Luebke, D., Ilconich, J., Dixon, J. K., Maginn, E. J., and Brennecke, J. F., High Temperature Separation of Carbon dioxide/Hydrogen Mixtures Using Facilitated Supported Ionic Liquid Membranes, Journal of Membrane Science, 322 (2008) 28-31.

DOI: 10.1016/j.memsci.2008.04.062

Google Scholar

[13] Gray, M. L., Champagne, K. J., Fauth, D., Baltrus, J. P., and Pennline Henry, Performance of Immobilized Tertiary Amine Solid Sorbents for the Capture of Carbon Dioxide, International Journal of Greenhouse Gas Control, 2 (2008) 3-8.

DOI: 10.1016/s1750-5836(07)00088-6

Google Scholar

[14] Liu, J., Yang, Q., Zhao, X. S., and Zhang, L., Pore Size Control of Mesoporous Silicas from Mixtures of Sodium Silicate and TEOS, Microporous and Mesoporous Materials, 106 (2007) 62-67.

DOI: 10.1016/j.micromeso.2007.02.045

Google Scholar